ترغب بنشر مسار تعليمي؟ اضغط هنا

Photopolarimetric monitoring of 41 blazars in the optical and near-infrared bands with the Kanata telescope

49   0   0.0 ( 0 )
 نشر من قبل Yuki Ikejiri
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Y. Ikejiri




اسأل ChatGPT حول البحث

Blazars are a kind of active galactic nuclei (AGN) in which a relativistic jet is considered to be directed along the line of sight. They are characterized by strong and rapid variability of the flux and high polarization. We performed a monitoring of 41 blazars in the optical and near-infrared regions from 2008 to 2009 using TRISPEC attached to the Kanata 1.5-m telescope. In this paper, we report the correlation of the flux, color and polarization using our data, and discuss universal features for blazars, which have not fully been established. Three blazars (3C 454.3, QSO 0454$-$234, and PKS 1510$-$089) tended to be redder when they were brighter, only during their faint states. This color behavior suggests that the contribution of a thermal component is strong in the faint states for those objects. Excluding this redder-when-brighter phase, we found that 24 blazars tended to be bluer when they were brighter. This number corresponds to 83% among well-observed objects which we observed for $>10$ nights. Thus, we conclude that the bluer-when-brighter trend is a universal feature for blazars. On the other hand, the correlation of the flux and the polarization degree is relatively weak; only 10 objects showed a significant positive correlation. We also investigated the luminosity-dependence of the color and polarization, and found that lower luminosity objects have smaller variation amplitudes both in the flux, color, and polarization degree.

قيم البحث

اقرأ أيضاً

We report on the correlation between the flux, color and polarization variations on time scales of days--months in blazars, and discuss their universal aspects. We performed monitoring of 42 blazars in the optical and near-infrared bands from 2008 to 2010 using TRISPEC attached to the Kanata 1.5-m telescope. We found that 28 blazars exhibited bluer-when-brighter trends in their whole or a part of time-series data sets. This corresponds to 88% of objects that were observed for >10 days. Thus, our observation unambiguously confirmed that the bluer-when-brighter trend is common in the emission from blazar jets. This trend was apparently generated by a variation component with a constant and relatively blue color and an underlying red component. Prominent short-term flares on time scales of days--weeks tended to exhibit a spectral hysteresis; their rising phases were bluer than their decay phases around the flare maxima. In contrast to the strong flux--color correlation, the correlation of the flux and polarization degree was relatively weak; only 10 objects showed significant positive correlations. Rotations of polarization were detected only in three objects: PKS 1510-089, 3C 454.3, and PKS 1749+096, and possibly in S5 0716+714. We also investigated the dependence of the degree of variability on the luminosity and the synchrotron peak frequency, u_peak. As a result, we found that lower luminosity and higher u_peak objects had smaller variations in their amplitudes both in the flux, color, and polarization degree. Our observation suggests the presence of several distinct emitting sources, which have different variation time-scales, colors, and polarizations. We propose that the energy injection by, for example, internal shocks in relativistic shells is a major factor for blazar variations on time scales of both days and months.
After three years of polarimetric monitoring of blazars, the RoboPol project has uncovered several key characteristics of polarimetric rotations in the optical for these most variable sources. The most important of these is that polarization properti es of the synchrotron emission in the optical appear to be directly linked with gamma-ray activity. In this paper, we discuss the evidence for this connection, as well as the broader features of polarimetric behavior in blazars that are key in making progress with theoretical modeling of blazar emission.
The RoboPol program has been monitoring the $R$-band linear polarisation parameters of an unbiased sample of 60 gamma-ray-loud blazars and a control sample of 15 gamma-ray-quite ones. The prime drive for the program has been the systematic study of t he temporal behaviour of the optical polarisation and particularly the potential association of smooth and long rotations of the polarisation angle with flaring activity at high energies. Here we present the program and discuss a list of selected topics from our studies of the first three observing seasons (2013--2015) both in the angle and in the amplitude domain.
74 - C.C. Hsu , K. Satalecka , M. Thom 2009
Blazars, a class of Active Galactic Nuclei (AGN) characterized by a close orientation of their relativistic outflows (jets) towards the line of sight, are a well established extragalactic TeV $gamma$-ray emitters. Since 2006, three nearby and TeV bri ght blazars, Markarian (Mrk) 421, Mrk 501 and 1ES 1959+650, are regularly observed by the MAGIC telescope with single exposures of 30 to 60 minutes. The sensitivity of MAGIC allows to establish a flux level of 30% of the Crab flux for each such observation. In a case of Mrk 421 strong flux variability in different time scales and a high correlation between X-ray/TeV emissions have been observed. In addition, preliminary results on measured light curves from Mrk 501 and 1ES1959+650 in 2007/8 are shown.
147 - P. Goldoni , S. Pita , C. Boisson 2020
Context. Blazars are the most numerous class of High Energy (HE; E about 50 MeV - few 100 GeV) and Very High Energy (VHE; E about 100 GeV - 10 TeV) gamma-ray emitters. As of today, a measured spectroscopic redshift is available for only about 50% of gamma-ray BL Lacs, mainly due to the difficulty of measuring reliable redshifts from their nearly featureless, continuum-dominated optical spectra. The knowledge of the redshift is fundamental for understanding the emission from blazars, for population studies and also for indirect studies of the extragalactic background light and searches for Lorentz invariance violation and axion-like particles using blazars. Aims. This paper is the first of a series of papers which aim to measure the redshift of a sample of blazars likely to be detected with the upcoming Cherenkov Telescope Array (CTA), a ground based gamma-ray observatory. Methods. Monte Carlo simulations were performed to select those hard spectrum gamma-ray blazars detected with the Fermi-LAT telescope still lacking redshift measurements but likely to be detected by CTA in 30 hours of observing time or less. Optical observing campaigns involving deep imaging and spectroscopic observations were organised to efficiently constrain their redshifts. We performed deep medium to high resolution spectroscopy of nineteen blazar optical counterparts using the ESI spectrograph at Keck, the RSS spectrograph at the SALT telescope, and the EFOSC2 spectrograph at the ESO NTT. We searched systematically for spectral features and, when possible, we estimated the contribution of the host galaxy to the total flux. Results. We measured eleven firm spectroscopic redshifts with values ranging from 0.1116 to 0.482. one tentative redshift, three redshift lower limits including one at z > 0.449 and another at z > 0.868. There were four objects found to have featureless spectra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا