ترغب بنشر مسار تعليمي؟ اضغط هنا

309 - V. Guzey 2013
We consider $J/psi$ photoproduction in ion--ion ultraperipheral collisions (UPCs) at the LHC and RHIC in the coherent and incoherent quasielastic channels with and without accompanying forward neutron emission and analyze the role of nuclear gluon sh adowing at small $x$, $x=10^{-4}-10^{-2}$, in these processes. We find that despite the good agreement between large nuclear gluon shadowing and the ALICE data in the coherent channel, in the incoherent channel, the leading twist approximation predicts the amount of nuclear suppression which is by approximately a factor of $1.5$ exceeds that seen in the data. We hypothesize that part of the discrepancy can be accounted for by the incoherent inelastic process of $J/psi$ photoproduction with nucleon dissociation. To separate the high-photon-energy and low-photon-energy contributions to the $d sigma_{AAto AAJ/psi}(y)/dy$ cross section, we consider ion--ion UPCs accompanied by neutron emission due to electromagnetic excitation of one or both colliding nuclei. We describe the corresponding PHENIX data and make predictions for the LHC kinematics. In addition, in the incoherent quasielastic case, we show that the separation between the low-photon-energy and high-photon-energy contributions can be efficiently performed by measuring the correlation between the directions of $J/psi$ and the emitted neutrons.
116 - M. Alvioli , M. Strikman 2013
Color fluctuations in hadron-hadron collisions are responsible for the presence of inelastic diffraction and lead to distinctive differences between the Gribov picture of high energy scattering and the low energy Glauber picture. We find that color f luctuations give a larger contribution to the fluctuations of the number of wounded nucleons than the fluctuations of the number of nucleons at a given impact parameter. The two contributions for the impact parameter averaged fluctuations are comparable. As a result, standard procedures for selecting peripheral (central) collisions lead to selection of configurations in the projectile which interact with smaller (larger) than average strength. We suggest that studies of pA collisions with a hard trigger may allow to observe effects of color fluctuations.
68 - M. Alvioli , M. Strikman 2010
We develop a new approach to production of the spectator nucleons in the heavy ion collisions. The energy transfer to the spectator system is calculated using the Monte Carlo based on the updated version of our generator of configurations in collidin g nuclei which includes a realistic account of short-range correlations in nuclei. The transferred energy distributions are calculated within the framework of the Glauber multiple scattering theory, taking into account all the individual inelastic and elastic collisions using an independent realistic calculation of the potential energy contribution of each of the nucleon-nucleon pairs to the total potential. We show that the dominant mechanism of the energy transfer is tearing apart pairs of nucleons with the major contribution coming from the short-range correlations. We calculate the momentum distribution of the emitted nucleons which is strongly affected by short range correlations including its dependence on the azimuthal angle. In particular, we predict a strong angular asymmetry along the direction of the impact parameter b, providing a unique opportunity to determine the direction of b. Also, we predict a strong dependence of the shape of the nucleon momentum distribution on the centrality of the nucleus-nucleus collision.
65 - T.C. Rogers , M. Strikman 2009
We propose a simple method for incorporating correlations into the impact parameter space description of multiple (semi-)hard partonic collisions in high energy hadron-hadron scattering. The perturbative QCD input is the standard factorization theore m for inclusive dijet production with a lower cutoff on transverse momentum. The width of the transverse distribution of hard partons is fixed by parameterizations of the two-gluon form factor. We then reconstruct the hard contribution to the total inelastic profile function and obtain corrections due to correlations to the more commonly used eikonal description. Estimates of the size of double correlation corrections are based on the rate of double collisions measured at the Tevatron. We find that, if typical values for the lower transverse momentum cutoff are used in the calculation of the inclusive hard dijet cross section, then the correlation corrections are necessary for maintaining consistency with expectations for the total inelastic proton-proton cross section at LHC energies.
68 - L. Frankfurt 2007
We summarize how the approach to the black--disk regime (BDR) of strong interactions at TeV energies influences rapidity gap survival in exclusive hard diffraction pp--> p + H + p (H =dijet, bar Q Q, Higgs). Employing a recently developed partonic de scription of such processes, we discuss (a) the suppression of diffraction at small impact parameters by soft spectator interactions in the BDR; (b) further suppression by inelastic interactions of hard spectator partons in the BDR; (c) effects of correlations between hard and soft interactions, as suggested by various models of proton structure (color fluctuations, spatial correlations of partons). Hard spectator interactions in the BDR substantially reduce the rapidity gap survival probability at LHC energies compared to previously reported estimates.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا