ترغب بنشر مسار تعليمي؟ اضغط هنا

We explore the relationships between the 3.3 {mu}m polycyclic aromatic hydrocarbon (PAH) feature and active galactic nucleus (AGN) properties of a sample of 54 hard X-ray selected bright AGNs, including both Seyfert 1 and Seyfert 2 type objects, usin g the InfraRed Camera (IRC) on board the infrared astronomical satellite AKARI. The sample is selected from the 9-month Swift/BAT survey in the 14-195 keV band and all of them have measured X-ray spectra at $E lesssim 10$ keV. These X-ray spectra provide measurements of the neutral hydrogen column density ($N_{rm H}$) towards the AGNs. We use the 3.3 {mu}m PAH luminosity ($L_{rm 3.3{mu}m}$) as a proxy for star formation activity and hard X-ray luminosity ($L_{rm 14-195keV}$) as an indicator of the AGN activity. We search for possible difference of star-formation activity between type 1 (un-absorbed) and type 2 (absorbed) AGNs. We have made several statistical analyses taking the upper-limits of the PAH lines into account utilizing survival analysis methods. The results of our $log(L_{rm 14-195keV})$ versus $log(L_{rm 3.3{mu}m})$ regression shows a positive correlation and the slope for the type 1/unobscured AGNs is steeper than that of type 2/obscured AGNs at a $3sigma$ level. Also our analysis show that the circum-nuclear star-formation is more enhanced in type 2/absorbed AGNs than type 1/un-absorbed AGNs for low X-ray luminosity/low Eddington ratio AGNs, while there is no significant dependence of star-formation activities on the AGN type in the high X-ray luminosities/Eddington ratios.
We report the detection and measurement of the absolute brightness and spatial fluctuations of the cosmic infrared background (CIB) with the AKARI satellite. We have carried out observations at 65, 90, 140 and 160 um as a cosmological survey in AKARI Deep Field South (ADF-S), which is one of the lowest cirrus regions with contiguous area on the sky. After removing bright galaxies and subtracting zodiacal and Galactic foregrounds from the measured sky brightness, we have successfully measured the CIB brightness and its fluctuations across a wide range of angular scales from arcminutes to degrees. The measured CIB brightness is consistent with previous results reported from COBE data but significantly higher than the lower limits at 70 and 160 um obtained with the Spitzer satellite from the stacking analysis of 24-um selected sources. The discrepancy with the Spitzer result is possibly due to a new galaxy population at high redshift obscured by hot dust. From power spectrum analysis at 90 um, three components are identified: shot noise due to individual galaxies; Galactic cirrus emission dominating at the largest angular scales of a few degrees; and an additional component at an intermediate angular scale of 10-30 arcminutes, possibly due to galaxy clustering. The spectral shape of the clustering component at 90 um is very similar to that at longer wavelengths as observed by Spitzer and BLAST. Moreover, the color of the fluctuations indicates that the clustering component is as red as Ultra-luminous infrared galaxies (ULIRGs) at high redshift, These galaxies are not likely to be the majority of the CIB emission at 90 um, but responsible for the clustering component. Our results provide new constraints on the evolution and clustering properties of distant infrared galaxies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا