ﻻ يوجد ملخص باللغة العربية
We report the detection and measurement of the absolute brightness and spatial fluctuations of the cosmic infrared background (CIB) with the AKARI satellite. We have carried out observations at 65, 90, 140 and 160 um as a cosmological survey in AKARI Deep Field South (ADF-S), which is one of the lowest cirrus regions with contiguous area on the sky. After removing bright galaxies and subtracting zodiacal and Galactic foregrounds from the measured sky brightness, we have successfully measured the CIB brightness and its fluctuations across a wide range of angular scales from arcminutes to degrees. The measured CIB brightness is consistent with previous results reported from COBE data but significantly higher than the lower limits at 70 and 160 um obtained with the Spitzer satellite from the stacking analysis of 24-um selected sources. The discrepancy with the Spitzer result is possibly due to a new galaxy population at high redshift obscured by hot dust. From power spectrum analysis at 90 um, three components are identified: shot noise due to individual galaxies; Galactic cirrus emission dominating at the largest angular scales of a few degrees; and an additional component at an intermediate angular scale of 10-30 arcminutes, possibly due to galaxy clustering. The spectral shape of the clustering component at 90 um is very similar to that at longer wavelengths as observed by Spitzer and BLAST. Moreover, the color of the fluctuations indicates that the clustering component is as red as Ultra-luminous infrared galaxies (ULIRGs) at high redshift, These galaxies are not likely to be the majority of the CIB emission at 90 um, but responsible for the clustering component. Our results provide new constraints on the evolution and clustering properties of distant infrared galaxies.
The results of a deep 20 cm radio survey at 20 cm are reported of the AKARI Deep Field South (ADF-S) near the South Ecliptic Pole (SEP), using the Australia Telescope Compact Array telescope, ATCA. The survey has 1 sigma detection limits ranging from
We use analytic computations to predict the power spectrum as well as the bispectrum of Cosmic Infrared Background (CIB) anisotropies. Our approach is based on the halo model and takes into account the mean luminosity-mass relation. The model is used
The AKARI Deep Field South (ADF-S) is a large extragalactic survey field that is covered by multiple instruments, from optical to far-IR and radio. I summarise recent results in this and related fields prompted by the release of the Herschel far-IR/s
We exploit ALMA 870um (345GHz) observations of submillimetre sources in the Extended Chandra Deep Field South to investigate the far-infrared properties of high-redshift submillimetre galaxies (SMGs). Using the precisely located 870um ALMA positions
The cosmic infrared background (CIRB) consists mainly of the integrated light of distant galaxies. In the far-infrared the current estimates of its surface brightness are based on the measurements of the COBE satellite. Independent confirmation of th