ترغب بنشر مسار تعليمي؟ اضغط هنا

We explore the evolution of the Colour-Magnitude Relation (CMR) and Luminosity Function (LF) at 0.4<z<1.3 from the VIMOS Public Extragalactic Redshift Survey (VIPERS) using ~45,000 galaxies with precise spectroscopic redshifts down to i_AB<22.5 over ~10.32 deg^2 in two fields. From z=0.5 to z=1.3 the LF and CMR are well defined for different galaxy populations and M^*_B evolves by ~1.04(1.09)+/-0.06(0.10) mag for the total (red) galaxy sample. We compare different criteria for selecting early-type galaxies (ETGs): (1) fixed cut in rest-frame (U-V) colours, (2) evolving cut in (U-V) colours, (3) rest-frame (NUV-r)-(r-K) colour selection, and (4) SED classification. Regardless of the method we measure a consistent evolution of the red-sequence (RS). Between 0.4<z<1.3 we find a moderate evolution of the RS intercept of Delta(U-V)=0.28+/-0.14 mag, favouring exponentially declining star formation (SF) histories with SF truncation at 1.7<=z<=2.3. Together with the rise in the ETG number density by 0.64 dex since z=1, this suggests a rapid build-up of massive galaxies (M>10^11 M_sun) and expeditious RS formation over a short period of ~1.5 Gyr starting before z=1. This is supported by the detection of ongoing SF in ETGs at 0.9<z<1.0, in contrast with the quiescent red stellar populations of ETGs at 0.5<z<0.6. There is an increase in the observed CMR scatter with redshift, two times larger than in galaxy clusters and at variance with theoretical models. We discuss possible physical mechanisms that support the observed evolution of the red galaxy population. Our findings point out that massive galaxies have experienced a sharp SF quenching at z~1 with only limited additional merging. In contrast, less-massive galaxies experience a mix of SF truncation and minor mergers which build-up the low- and intermediate-mass end of the CMR.
We present the first Public Data Release (PDR-1) of the VIMOS Public Extragalactic Survey (VIPERS). It comprises 57 204 spectroscopic measurements together with all additional information necessary for optimal scientific exploitation of the data, in particular the associated photometric measurements and quantification of the photometric and survey completeness. VIPERS is an ESO Large Programme designed to build a spectroscopic sample of 100 000 galaxies with iAB < 22.5 and 0.5 < z < 1.5 with high sampling rate (~45%). The survey spectroscopic targets are selected from the CFHTLS-Wide five-band catalogues in the W1 and W4 fields. The final survey will cover a total area of nearly 24 deg2, for a total comoving volume between z = 0.5 and 1.2 of ~4x10^7 h^(-3)Mpc^3 and a median galaxy redshift of z~0.8. The release presented in this paper includes data from virtually the entire W4 field and nearly half of the W1 area, thus representing 64% of the final dataset. We provide a detailed description of sample selection, observations and data reduction procedures; we summarise the global properties of the spectroscopic catalogue and explain the associated data products and their use, and provide all the details for accessing the data through the survey database (http://vipers.inaf.it) where all information can be queried interactively.
We describe the construction and general features of VIPERS, the VIMOS Public Extragalactic Redshift Survey. This `Large Programme has been using the ESO VLT with the aim of building a spectroscopic sample of ~100,000 galaxies with i_{AB}<22.5 and 0. 5<z<1.5. The survey covers a total area of ~24 deg^2 within the CFHTLS-Wide W1 and W4 fields. VIPERS is designed to address a broad range of problems in large-scale structure and galaxy evolution, thanks to a unique combination of volume (~ 5 x 10^7 h^{-3} Mpc^3) and sampling rate (~ 40%), comparable to state-of-the-art surveys of the local Universe, together with extensive multi-band optical and near-infrared photometry. Here we present the survey design, the selection of the source catalogue and the development of the spectroscopic observations. We discuss in detail the overall selection function that results from the combination of the different constituents of the project. This includes the masks arising from the parent photometric sample and the spectroscopic instrumental footprint, together with the weights needed to account for the sampling and the success rates of the observations. Using the catalogue of 53,608 galaxy redshifts composing the forthcoming VIPERS Public Data Release 1 (PDR-1), we provide a first assessment of the quality of the spectroscopic data. Benefiting from the combination of size and detailed sampling of this dataset, we conclude by presenting a map showing in unprecedented detail the large-scale distribution of galaxies between 5 and 8 billion years ago. [abridged]
Using the group catalog obtained from zCOSMOS spectroscopic data and the complementary photometric data from the COSMOS survey, we explore segregation effects occurring in groups of galaxies at intermediate/high redshifts. We built two composite grou ps at intermediate (0.2 <= z <= 0.45) and high (0.45 < z <= 0.8) redshifts, and we divided the corresponding composite group galaxies into three samples according to their distance from the group center. We explored how galaxy stellar masses and colors - working in narrow bins of stellar masses - vary as a function of the galaxy distance from the group center. We found that the most massive galaxies in our sample (Log(M_gal/M_sun) >= 10.6) do not display any strong group-centric dependence of the fractions of red/blue objects. For galaxies of lower masses (9.8 <= Log(M_gal/M_sun) <= 10.6) there is a radial dependence in the changing mix of red and blue galaxies. This dependence is most evident in poor groups, whereas richer groups do not display any obvious trend of the blue fraction. Interestingly, mass segregation shows the opposite behavior: it is visible only in rich groups, while poorer groups have a a constant mix of galaxy stellar masses as a function of radius. We suggest a simple scenario where color- and mass-segregation originate from different physical processes. While dynamical friction is the obvious cause for establishing mass segregation, both starvation and galaxy-galaxy collisions are plausible mechanisms to quench star formation in groups at a faster rate than in the field. In poorer groups the environmental effects are caught in action superimposed to secular galaxy evolution. Their member galaxies display increasing blue fractions when moving from the group center to more external regions, presumably reflecting the recent accretion history of these groups.
We took advantage of the wealth of information provided by the first ~10000 galaxies of the zCOSMOS-bright survey and its group catalogue to study the complex interplay between group environment and galaxy properties. The classical indicator F_blue ( fraction of blue galaxies) proved to be a simple but powerful diagnostic tool. We studied its variation for different luminosity and mass selected galaxy samples. Using rest-frame B-band selected samples, the groups galaxy population exhibits significant blueing as redshift increases, but maintains a lower F_blue with respect both to the global and the isolated galaxy population. However moving to mass selected samples it becomes apparent that such differences are largely due to the biased view imposed by the B-band luminosity selection, being driven by the population of lower mass, bright blue galaxies for which we miss the redder, equally low mass, counterparts. By focusing the analysis on narrow mass bins such that mass segregation becomes negligible we find that only for the lowest mass bin explored (logMass <= 10.6) does a significant residual difference in color remain as a function of environment, while this difference becomes negligible toward higher masses. Our results indicate that red galaxies of logMass >= 10.8 are already in place at z ~ 1 and do not exhibit any strong environmental dependence, possibly originating from so-called nature/internal mechanisms. In contrast, for lower galaxy masses and redshifts lower than z ~ 1, we observe the emergence in groups of a population of nurture red galaxies: slightly deviating from the trend of the downsizing scenario followed by the global galaxy population, and more so with cosmic time. These galaxies exhibit signatures of group-related secular physical mechanisms directly influencing galaxy evolution.
Hierarchical models of galaxy formation predict that the properties of a dark matter halo depend on the large-scale environment surrounding the halo. As a result of this correlation, we expect massive haloes to be present in larger number in overdens e regions than in underdense ones. Given that a correlation exists between a galaxy stellar mass and the hosting dark matter halo mass, the segregation in dark matter halo mass should then result in a segregation in the distribution of stellar mass in the galaxy population. In this work we study the distribution of galaxy stellar mass and rest-frame optical color as a function of the large-scale galaxy distribution using the VLT VIMOS Deep Survey sample, in order to verify the presence of segregation in the properties of the galaxy population. We use the VVDS redshift measurements and multi-band photometric data to derive estimates of the stellar mass, rest-frame optical color, and of the large-scale galaxy density, on a scale of approximately 8 Mpc, for a sample of 5619 galaxies in the redshift range 0.2<z<1.4. We observe a significant mass and optical color segregation over the whole redshift interval covered by our sample, such that the median value of the mass distribution is larger and the rest-frame optical color is redder in regions of high galaxy density. The amplitude of the mass segregation changes little with redshift, at least in the high stellar mass regime that we can uniformely sample over the 0.2<z<1.4 redshift interval. The color segregation, instead, decreases significantly for z>0.7. However, when we consider only galaxies in narrow bins of stellar mass, in order to exclude the effects of the stellar mass segregation on the galaxy properties, we do not observe any more any significant color segregation.
Aims. We investigate the relationships between three main optical galaxy observables (spectral properties, colours, and morphology), exploiting the data set provided by the COSMOS/zCOSMOS survey. The purpose of this paper is to define a simple galaxy classification cube, using a carefully selected sample of around 1000 galaxies. Methods. Using medium resolution spectra of the first 1k zCOSMOS-bright sample, optical photometry from the Subaru/COSMOS observations, and morphological measurements derived from ACS imaging, we analyze the properties of the galaxy population out to z~1. Applying three straightforward classification schemes (spectral, photometric, and morphological), we identify two main galaxy types, which appear to be linked to the bimodality of galaxy population. The three parametric classifications constitute the axes of a classification cube. Results. A very good agreement exists between the classification from spectral data (quiescent/star-forming galaxies) and that based on colours (red/blue galaxies). The third parameter (morphology) is less well correlated with the first two: in fact a good correlation between the spectral classification and that based on morphological analysis (early-/late-type galaxies) is achieved only after partially complementing the morphological classification with additional colour information. Finally, analyzing the 3D-distribution of all galaxies in the sample, we find that about 85% of the galaxies show a fully concordant classification, being either quiescent, red, bulge-dominated galaxies (~20%) or star-forming, blue, disk-dominated galaxies (~65%). These results imply that the galaxy bimodality is a consistent behaviour both in morphology, colour and dominant stellar population, at least out to z~1.
We selected a mass-limited sample of 4048 objects from the VIMOS VLT Deep Survey in the redshift interval 0.5<z<1.3. We used the amplitude of the 4000 Balmer break (Dn4000) to separate the galaxy population and the EW[OII]3727 line as proxy for the s tar formation activity. We discuss to what extent stellar mass drives galaxy evolution, showing for the first time the interplay between stellar ages and stellar masses over the past 8Gyr. Low-mass galaxies have small Dn4000 and at increasing stellar mass, the galaxy distribution moves to higher Dn4000 values as observed in the local Universe. As cosmic time goes by, we witness an increasing abundance of massive spectroscopically ET systems at the expense of the LT systems. This spectral transformation is a process started at early epochs and continuing efficiently down to the local Universe. This is confirmed by the evolution of our type-dependent stellar mass function. The underlying stellar ages of LT galaxies apparently do not show evolution, likely as a result of a continuous formation of new stars. All star formation activity indicators consistently point towards a star formation history peaked in the past for massive galaxies, with little or no residual star formation taking place in the most recent epochs. The activity and efficiency of forming stars are mechanisms that depend on stellar mass, and the mass assembly becomes progressively less efficient in massive systems as time elapses. The concepts of star formation downsizing and mass assembly downsizing describe a single scenario that has a top-down evolutionary pattern. The role of (dry) merging events seems to be only marginal at z<1.3, as our estimated efficiency in stellar mass assembly can possibly account for the progressive accumulation of passively evolving galaxies.
We explore the properties of the submillijansky radio population at 20 cm by applying a newly developed optical color-based method to separate star forming (SF) from AGN galaxies at intermediate redshifts (z<1.3). Although optical rest-frame colors a re used, our separation method is shown to be efficient, and not biased against dusty starburst galaxies. This classification method has been calibrated and tested on a local radio selected optical sample. Given accurate multi-band photometry and redshifts, it carries the potential to be generally applicable to any galaxy sample where SF and AGN galaxies are the two dominant populations. In order to quantify the properties of the submillijansky radio population, we have analyzed ~2,400 radio sources, detected at 20 cm in the VLA-COSMOS survey. 90% of these have submillijansky flux densities. We classify the objects into 1) star candidates, 2) quasi stellar objects, 3) AGN, 4) SF, and 5) high redshift (z>1.3) galaxies. We find, for the composition of the submillijansky radio population, that SF galaxies are not the dominant population at submillijansky flux levels, as previously often assumed, but that they make up an approximately constant fraction of 30-40% in the flux density range of ~50 microJy to 0.7 mJy. In summary, based on the entire VLA-COSMOS radio population at 20 cm, we find that the radio population at these flux densities is a mixture of roughly 30-40% of SF and 50-60% of AGN galaxies, with a minor contribution (~10%) of QSOs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا