ترغب بنشر مسار تعليمي؟ اضغط هنا

The zCOSMOS redshift survey: the three-dimensional classification cube and bimodality in galaxy physical properties

226   0   0.0 ( 0 )
 نشر من قبل Marco Mignoli
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aims. We investigate the relationships between three main optical galaxy observables (spectral properties, colours, and morphology), exploiting the data set provided by the COSMOS/zCOSMOS survey. The purpose of this paper is to define a simple galaxy classification cube, using a carefully selected sample of around 1000 galaxies. Methods. Using medium resolution spectra of the first 1k zCOSMOS-bright sample, optical photometry from the Subaru/COSMOS observations, and morphological measurements derived from ACS imaging, we analyze the properties of the galaxy population out to z~1. Applying three straightforward classification schemes (spectral, photometric, and morphological), we identify two main galaxy types, which appear to be linked to the bimodality of galaxy population. The three parametric classifications constitute the axes of a classification cube. Results. A very good agreement exists between the classification from spectral data (quiescent/star-forming galaxies) and that based on colours (red/blue galaxies). The third parameter (morphology) is less well correlated with the first two: in fact a good correlation between the spectral classification and that based on morphological analysis (early-/late-type galaxies) is achieved only after partially complementing the morphological classification with additional colour information. Finally, analyzing the 3D-distribution of all galaxies in the sample, we find that about 85% of the galaxies show a fully concordant classification, being either quiescent, red, bulge-dominated galaxies (~20%) or star-forming, blue, disk-dominated galaxies (~65%). These results imply that the galaxy bimodality is a consistent behaviour both in morphology, colour and dominant stellar population, at least out to z~1.

قيم البحث

اقرأ أيضاً

We present the Galaxy Stellar Mass Function (MF) up to z~1 from the zCOSMOS-bright 10k spectroscopic sample. We investigate the total MF and the contribution of ETGs and LTGs, defined by different criteria (SED, morphology or star formation). We unve il a galaxy bimodality in the global MF, better represented by 2 Schechter functions dominated by ETGs and LTGs, respectively. For the global population we confirm that low-mass galaxies number density increases later and faster than for massive galaxies. We find that the MF evolution at intermediate-low values of Mstar (logM<10.6) is mostly explained by the growth in stellar mass driven by smoothly decreasing star formation activities. The low residual evolution is consistent with ~0.16 merger per galaxy per Gyr (of which fewer than 0.1 are major). We find that ETGs increase in number density with cosmic time faster for decreasing Mstar, with a median building redshift increasing with mass, in contrast with hierarchical models. For LTGs we find that the number density of blue or spiral galaxies remains almost constant from z~1. Instead, the most extreme population of active star forming galaxies is rapidly decreasing in number density. We suggest a transformation from blue active spirals of intermediate mass into blue quiescent and successively (1-2 Gyr after) into red passive types. The complete morphological transformation into red spheroidals, required longer time-scales or follows after 1-2 Gyr. A continuous replacement of blue galaxies is expected by low-mass active spirals growing in stellar mass. We estimate that on average ~25% of blue galaxies is transforming into red per Gyr for logM<11. We conclude that the build-up of galaxies and ETGs follows the same downsizing trend with mass as the formation of their stars, converse to the trend predicted by current SAMs. We expect a negligible evolution of the global Galaxy Baryonic MF.
Our goal is to develop a new and reliable statistical method to classify galaxies from large surveys. We probe the reliability of the method by comparing it with a three-dimensional classification cube, using the same set of spectral, photometric and morphological parameters.We applied two different methods of classification to a sample of galaxies extracted from the zCOSMOS redshift survey, in the redshift range 0.5 < z < 1.3. The first method is the combination of three independent classification schemes, while the second method exploits an entirely new approach based on statistical analyses like Principal Component Analysis (PCA) and Unsupervised Fuzzy Partition (UFP) clustering method. The PCA+UFP method has been applied also to a lower redshift sample (z < 0.5), exploiting the same set of data but the spectral ones, replaced by the equivalent width of H$alpha$. The comparison between the two methods shows fairly good agreement on the definition on the two main clusters, the early-type and the late-type galaxies ones. Our PCA-UFP method of classification is robust, flexible and capable of identifying the two main populations of galaxies as well as the intermediate population. The intermediate galaxy population shows many of the properties of the green valley galaxies, and constitutes a more coherent and homogeneous population. The fairly large redshift range of the studied sample allows us to behold the downsizing effect: galaxies with masses of the order of $3cdot 10^{10}$ Msun mainly are found in transition from the late type to the early type group at $z>0.5$, while galaxies with lower masses - of the order of $10^{10}$ Msun - are in transition at later epochs; galaxies with $M <10^{10}$ Msun did not begin their transition yet, while galaxies with very large masses ($M > 5cdot 10^{10}$ Msun) mostly completed their transition before $zsim 1$.
The contribution of major mergers to galaxy mass assembly along cosmic time is an important ingredient to the galaxy evolution scenario. We aim to measure the evolution of the merger rate for both luminosity/mass selected galaxy samples and investiga te its dependence with the local environment. We use a sample of 10644 spectroscopically observed galaxies from the zCOSMOS redshift survey to identify pairs of galaxies destined to merge, using only pairs for which the velocity difference and projected separation of both components with a confirmed spectroscopic redshift indicate a high probability of merging. We have identified 263 spectroscopically confirmed pairs with r_p^{max} = 100 h^{-1} kpc. We find that the density of mergers depends on luminosity/mass, being higher for fainter/less massive galaxies, while the number of mergers a galaxy will experience does not depends significantly on its intrinsic luminosity but rather on its stellar mass. We find that the pair fraction and merger rate increase with local galaxy density, a property observed up to redshift z=1. We find that the dependence of the merger rate on the luminosity or mass of galaxies is already present up to redshifts z=1, and that the evolution of the volumetric merger rate of bright (massive) galaxies is relatively flat with redshift with a mean value of 3*10^{-4} (8*10^{-5} respectively) mergers h^3 Mpc^{-3} Gyr^{-1}. The dependence of the merger rate with environment indicates that dense environments favors major merger events as can be expected from the hierarchical scenario. The environment therefore has a direct impact in shapping-up the mass function and its evolution therefore plays an important role on the mass growth of galaxies along cosmic time.
The identities of the main processes triggering and quenching star-formation in galaxies remain unclear. A key stage in evolution, however, appears to be represented by post-starburst galaxies. To investigate their impact on galaxy evolution, we init iated a multiwavelength study of galaxies with k+a spectral features in the COSMOS field. We examine a mass-selected sample of k+a galaxies at z=0.48-1.2 using the spectroscopic zCOSMOS sample. K+a galaxies occupy the brightest tail of the luminosity distribution. They are as massive as quiescent galaxies and populate the green valley in the colour versus luminosity (or stellar mass) distribution. A small percentage (<8%) of these galaxies have radio and/or X-ray counterparts (implying an upper limit to the SFR of ~8Msun/yr). Over the entire redshift range explored, the class of k+a galaxies is morphologically a heterogeneous population with a similar incidence of bulge-dominated and disky galaxies. This distribution does not vary with the strength of the Hdelta absorption line but instead with stellar mass in a way reminiscent of the well-known mass-morphology relation. Although k+a galaxies are also found in underdense regions, they appear to reside typically in a similarly rich environment as quiescent galaxies on a physical scale of ~2-8Mpc, and in groups they show a morphological early-to-late type ratio similar to the quiescent galaxy class. With the current data set, we do not find evidence of statistical significant evolution in either the number/mass density of k+a galaxies at intermediate redshift with respect to the local values, or the spectral properties. Those galaxies, which are affected by a sudden quenching of their star-formation activity, may increase the stellar mass of the red-sequence by up to a non-negligible level of ~10%.
We describe the selection of galaxies targeted in eight low redshift clusters (APMCC0917, A168, A4038, EDCC442, A3880, A2399, A119 and A85; $0.029 < z < 0.058$) as part of the Sydney-AAO Multi-Object integral field Spectrograph Galaxy Survey (SAMI-GS ). We have conducted a redshift survey of these clusters using the AAOmega multi-object spectrograph on the 3.9m Anglo-Australian Telescope. The redshift survey is used to determine cluster membership and to characterise the dynamical properties of the clusters. In combination with existing data, the survey resulted in 21,257 reliable redshift measurements and 2899 confirmed cluster member galaxies. Our redshift catalogue has a high spectroscopic completeness ($sim 94%$) for $r_{rm petro} leq 19.4$ and clustercentric distances $R< 2rm{R}_{200}$. We use the confirmed cluster member positions and redshifts to determine cluster velocity dispersion, $rm{R}_{200}$, virial and caustic masses, as well as cluster structure. The clusters have virial masses $14.25 leq {rm log }({rm M}_{200}/rm{M}_{odot}) leq 15.19$. The cluster sample exhibits a range of dynamical states, from relatively relaxed-appearing systems, to clusters with strong indications of merger-related substructure. Aperture- and PSF-matched photometry are derived from SDSS and VST/ATLAS imaging and used to estimate stellar masses. These estimates, in combination with the redshifts, are used to define the input target catalogue for the cluster portion of the SAMI-GS. The primary SAMI-GS cluster targets have $R< rm{R}_{200}$, velocities $|v_{rm pec}| < 3.5sigma_{200}$ and stellar masses $9.5 leq {rm log(M}^*_{approx}/rm{M}_{odot}) leq 12$. Finally, we give an update on the SAMI-GS progress for the cluster regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا