ترغب بنشر مسار تعليمي؟ اضغط هنا

89 - T. Maier , H. Kadau , M. Schmitt 2015
We show that for ultracold magnetic lanthanide atoms chaotic scattering emerges due to a combination of anisotropic interaction potentials and Zeeman coupling under an external magnetic field. This scattering is studied in a collaborative experimenta l and theoretical effort for both dysprosium and erbium. We present extensive atom-loss measurements of their dense magnetic Feshbach resonance spectra, analyze their statistical properties, and compare to predictions from a random-matrix-theory inspired model. Furthermore, theoretical coupled-channels simulations of the anisotropic molecular Hamiltonian at zero magnetic field show that weakly-bound, near threshold diatomic levels form overlapping, uncoupled chaotic series that when combined are randomly distributed. The Zeeman interaction shifts and couples these levels, leading to a Feshbach spectrum of zero-energy bound states with nearest-neighbor spacings that changes from randomly to chaotically distributed for increasing magnetic field. Finally, we show that the extreme temperature sensitivity of a small, but sizeable fraction of the resonances in the Dy and Er atom-loss spectra is due to resonant non-zero partial-wave collisions. Our threshold analysis for these resonances indicates a large collision-energy dependence of the three-body recombination rate.
254 - T. Maier , H. Kadau , M. Schmitt 2014
We present our technique to create a magneto-optical trap for dysprosium atoms using the narrow-line cooling transition at 626$,$nm to achieve suitable conditions for direct loading into an optical dipole trap. The magneto-optical trap is loaded from an atomic beam via a Zeeman slower using the strongest atomic transition at 421$,$nm. With this combination of two cooling transitions we can trap up to $2.0cdot10^8$ atoms at temperatures down to 6$, mu$K. This cooling approach is simpler than present work with ultracold dysprosium and provides similar starting conditions for a transfer to an optical dipole trap.
We present measurements of the hyperfine coefficients and isotope shifts of the Dy I $683.731 $nm transition, using saturated absorption spectroscopy on an atomic beam. A King Plot is drawn resulting in an updated value for the specific mass shift $d elta u_mathrm{684,sms}^mathrm{164-162}=-534 pm 17 MHz$. Using fluorescence spectroscopy we measure the excited state lifetime $tau_{684}=1.68(5) mu$s, yielding a linewidth of $gamma_mathrm{684} = 95 pm 3 kHz$. We give an upper limit to the branching ratio between the two decay channels from the excited state showing that this transition is useable for optical pumping into a dark state and demagnetization cooling.
In a joint theoretical and experimental study we investigate the pressure dependence of the Eu valence in EuPd_3B_x (0 <= x <= 1). Density functional band structure calculations are combined with x-ray absorption and x-ray diffraction measurements un der hydrostatic pressures up to 30 GPa. It is observed that the heterogenous mixed-valence state of Eu in EuPd_3B_x (x >= 0.2) can be suppressed partially in this pressure range. From the complementary measurements we conclude that the valence change in EuPd_3B_x is mainly driven by the number of additional valence electrons due to the insertion of boron, whereas the volume change is a secondary effect. A similar valence change of Eu in Eu_{1-x}La_xPd_3 is predicted for x >= 0.4, in line with the suggested electron count scenario.
Candidate supernova remnants G23.5+0.1 and G25.5+0.0 were observed by XMM-Newton in the course of a snap-shot survey of plerionic and composite SNRs in the Galactic plane. In the field of G23.5+0.1, we detected an extended source, ~3 in diameter, whi ch we tentatively interpret as a pulsar-wind nebula (PWN) of the middle-aged radio pulsar B1830-08. Our analysis suggests an association between PSR B1830-08 and the surrounding diffuse radio emission. If the radio emission is due to the SNR, then the pulsar must be significantly younger than its characteristic age. Alternatively, the radio emission may come from a relic PWN. In the field of G25.5+0.0, which contains the extended TeV source HESS J1837-069, we detected the recently discovered young high-energy pulsar J1838-0655 embedded in a PWN with extent of 1.3. We also detected another PWN candidate (AX J1837.3-0652) with an extent of 2 and unabsorbed luminosity L_(2-10 keV) ~ 4 x 10^33 erg/s at d=7 kpc. The third X-ray source, located within the extent of the HESS J1837-069, has a peculiar extended radio counterpart, possibly a radio galaxy with a double nucleus or a microquasar. We did not find any evidence of the SNR emission in the G25.5+0.0 field. We provide detailed multiwavelength analysis and identifications of other field sources and discuss robustness of the G25.5+0.0 and G23.5+0.1 classifications as SNRs. (abstract abridged)
Based on density functional calculations, we present a detailed theoretical study of the electronic structure and the magnetic properties of the quasi-one dimensional chain cuprate Li_2ZrCuO_4 (Li_2CuZrO_4). For the relevant ratio of the next-nearest neighbor exchange J_2 to the nearest neighbor exchange J_1 we find alpha = -J_2/J_1 = 0.22pm0.02 which is very close to the critical point at 1/4. Owing this vicinity to a ferromagnetic-helical critical point, we study in detail the influence of structural peculiarities such as the reported Li disorder and the non-planar chain geometry on the magnetic interactions combining the results of LDA based tight-binding models with LDA+U derived exchange parameters. Our investigation is complemented by an exact diagonalization study of a multi-band Hubbard model for finite clusters predicting a strong temperature dependence of the optical conductivity for Li_2ZrCuO_4.
134 - B. Stelzer 2008
The interpretation of X-ray detections from Herbig Ae/Be stars is disputed as it is not clear if these intermediate-mass pre-main sequence stars are able to drive a dynamo and ensuing phenomena of magnetic activity. Alternative X-ray production mecha nisms, related to stellar winds, star-disk magnetospheres, or unresolved late-type T Tauri star companions have been proposed. In a series of papers we have been investigating high-resolution X-ray Chandra images of Herbig Ae/Be and main-sequence B-type stars to test the T Tauri hypothesis by spatially resolving known visual companions from the primaries. Here we report on six as yet unpublished Chandra exposures from our X-ray survey of Herbig stars. The target list comprises six Herbig stars with known cool companions, and three further A/B-type stars that are serendipitously in the Chandra field-of-view. In this sample we record a detection rate of 100%, i.e. all A/B-type stars display X-ray emission at levels of log(L_x/L_bol) ~ -5...-7. The analysis of hardness ratios confirms that HAeBes have hotter and/or more absorbed X-ray emitting plasma than more evolved B-type stars. Radiative winds are ruled out as exclusive emission mechanism on basis of the high X-ray temperatures. Confirming earlier results, the X-ray properties of Herbig Ae/Be stars are not vastly different from those of their late-type companion stars (if such are known). The diagnostics provided by the presently available data leave open if the hard X-ray emission of Herbig stars is due to young age or indicative of further coronally active low-mass companion stars. In the latter case, our detection statistics imply a high fraction of higher-order multiple systems among Herbig stars.
Precision measurement of the stop mass at the ILC is done in a method based on cross-sections measurements at two different center-of-mass energies. This allows to minimize both the statistical and systematic errors. In the framework of the MSSM, a l ight stop, compatible with electro-weak baryogenesis, is studied in its decay into a charm jet and neutralino, the Lightest Supersymmetric Particle(LSP), as a candidate of dark matter. This takes place for a small stop-neutralino mass difference.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا