ترغب بنشر مسار تعليمي؟ اضغط هنا

A habitable zone of a star is defined as a range of orbits within which a rocky planet can support liquid water on its surface. The most intriguing question driving the search for habitable planets is whether they host life. But is the age of the pla net important for its habitability? If we define habitability as the ability of a planet to beget life, then probably not. After all, life on Earth has developed within only about 800 Myr after its formation. If, however, we define habitability as our ability to detect life on the surface of exoplanets, then age becomes a crucial parameter. Only after life had evolved sufficiently complex to change its environment on a planetary scale, can we detect it remotely through its imprint on the atmosphere - the biosignatures, out of which the photosynthetic oxygen is the most prominent indicator of developed life as we know it. But the onset of photosynthesis on planets in habitable zones may take much longer time than the planetary age. The knowledge of the age of a planet is necessary for developing a strategy to search for exoplanets carrying complex (developed) life - many confirmed potentially habitable planets are too young (orbiting Population I stars) and may not have had enough time to develop and/or sustain detectable life. In the last decade, many planets orbiting old (9-13 Gyr) metal-poor Population II stars have been discovered. Such planets had had enough time to develop necessary chains of chemical reactions and may carry detectable life if located in a habitable zone. These old planets should be primary targets in search for the extraterrestrial life.
We have begun a program of high altitude ballooning at the Indian Institute of Astrophysics, Bangalore. Recent advances in balloons as well as in electronics have made possible scientific payloads at costs accessible to university departments. The pr imary purpose of this activity is to test low-cost ultraviolet (UV) payloads for eventual space flight, but to also explore phenomena occurring in the upper atmosphere, including sprites and meteorite impacts, using balloon-borne payloads. This paper discusses the results of three tethered balloon experiments carried out at the CREST campus of IIA, Hosakote and our plans for the future. We also describe the stages of payload development for these experiments.
Several planets have recently been discovered around old metal-poor stars, implying that these planets are also old, formed in the early Universe. The canonical theory suggests that the conditions for their formation could not have existed at such ea rly epochs. In this paper we argue that the required conditions, such as sufficiently high dust-to-gas ratio, could in fact have existed in the early Universe immediately following the first episode of metal production in Pop. III stars, both in metal-enhanced and metal-deficient environments. Metal-rich regions may have existed in multiple isolated pockets of enriched and weakly-mixed gas close to the massive Pop. III stars. Observations of quasars at redshifts $zsim 5$, and gamma-ray bursts at $zsim 6$, show a very wide spread of metals in absorption from $rm [X/H]simeq -3$ to $simeq -0.5$. This suggests that physical conditions in the metal-abundant clumps could have been similar to where protoplanets form today. However, planets could have formed even in low-metallicity environments, where formation of stars is expected to proceed due to lower opacity at higher densities. In such cases, the circumstellar accretion disks are expected to rotate faster than their high-metallicity analogues. This can result in the enhancement of dust particles at the disk periphery, where they can coagulate and start forming planetesimals. In conditions with the low initial specific angular momentum, radiation from the central protostar can act as a trigger to drive instabilities with masses in the Earth to Jupiter mass range. Discoveries of planets around old metal-poor stars (e.g. HIP 11952, $rm [Fe/H]sim -1.95$) show that planets did indeed form in the early Universe and this may require modification of our understanding of the physical processes that produce them. This work is an attempt to provide a heuristic scenario for their existence.
We present the results of a commissioning campaign to observe Galactic globular clusters for the search of microlensing events. The central 10 X 10 region of the globular cluster NGC 5024 was monitored using the 2-m Himalayan Chandra Telescope in R-b and for a period of about 8 hours on 24 March 2010. Light curves were obtained for nearly 10,000 stars, using a modified Difference Image Analysis (DIA) technique. We identified all known variables within our field of view and revised periods and status of some previously reported short-period variables. We report about eighty new variable sources and present their equatorial coordinates, periods, light curves and possible types. Out of these, 16 are SX Phe stars, 10 are W UMa-type stars, 14 are probable RR Lyrae stars and 2 are detached eclipsing binaries. Nine of the newly discovered SX Phe stars and two eclipsing binaries belong to the Blue Straggler Star (BSS) population.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا