ترغب بنشر مسار تعليمي؟ اضغط هنا

Information technology depends on how one can control and manipulate signals accurately and quickly. Transistors are at the core of modern technology and are based on electron charges. But as the device dimension shrinks, heating becomes a major prob lem. The spintronics explores the spin degree of electrons and thus bypasses the heat, at least in principle. For this reason, spin-based technology offers a possible solution. In this review, we survey some of latest developments in all-optical switching (AOS), where ultrafast laser pulses are able to reverse spins from one direction to the other deterministically. But AOS only occurs in a special group of magnetic samples and within a narrow window of laser parameters. Some samples need multiple pulses to switch spins, while others need a single-shot pulse. To this end, there are several models available, but the underlying mechanism is still under debate. This review is different from other prior reviews in two aspects. First, we sacrifice the completeness of reviewing existing studies, while focusing on a limited set of experimental results that are highly reproducible in different labs and provide actual switched magnetic domain images. Second, we extract the common features from existing experiments that are critical to AOS, without favoring a particular switching mechanism. We emphasize that given the limited experimental data, it is really premature to identify a unified mechanism. We compare these features with our own model prediction, without resorting to a phenomenological scheme. We hope that this review serves the broad readership well.
Our main problem is to find finite topological spaces to within homeomorphism, given (also to within homeomorphism) the quotient-spaces obtained by identifying one point of the space with each one of the other points. In a previous version of this pa per, our aim was to reconstruct a topological space from its quotient-spaces; but a reconstruction is not always possible either in the sense that several non-homeomorphic topological spaces yield the same quotient-spaces, or in the sense that no topological space yields an arbitrarily given family of quotient-spaces. In this version of the paper we present an algorithm that detects, and deals with, all these situations.
When compared with pure mathematicians, applied ones have a clear preference for proofs that go beyond a chain of reasonings and do exhibit the fact to be proved. Here we exhibit the bijection between the 60 icosahedron rotations of the group R and the 60 permutations of the group A5.
The exchange interaction among electrons is one of the most fundamental quantum mechanical interactions in nature and underlies any magnetic phenomena from ferromagnetic ordering to magnetic storage. The current technology is built upon a thermal or magnetic field, but a frontier is emerging to directly control magnetism using ultrashort laser pulses. However, little is known about the fate of the exchange interaction. Here we report unambiguously that photoexcitation is capable of quenching the exchange interaction in all three $3d$ ferromagnetic metals. The entire process starts with a small number of photoexcited electrons which build up a new and self-destructive potential that collapses the system into a new state with a reduced exchange splitting. The spin moment reduction follows a Bloch-like law as $M_z(Delta E)=M_z(0)(1-{Delta E}/{Delta E_0})^{frac{1}{beta}}$, where $Delta E$ is the absorbed photon energy and $beta$ is a scaling exponent. A good agreement is found between the experimental and our theoretical results. Our findings may have a broader implication for dynamic electron correlation effects in laser-excited iron-based superconductors, iron borate, rare-earth orthoferrites, hematites and rare-earth transition metal alloys.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا