ترغب بنشر مسار تعليمي؟ اضغط هنا

We present new near-infrared photometry for seven late-type T dwarfs and nine Y-type dwarfs, and lower limit magnitudes for a tenth Y dwarf, obtained at Gemini Observatory. We also present a reanalysis of H-band imaging data from the Keck Observatory Archive, for an eleventh Y dwarf. These data are combined with earlier MKO-system photometry, Spitzer and WISE mid-infrared photometry, and available trigonometric parallaxes, to create a sample of late-type brown dwarfs which includes ten T9-T9.5 dwarfs or dwarf systems, and sixteen Y dwarfs. We compare the data to our models which include updated H_2 and NH_3 opacity, as well as low-temperature condensate clouds. The models qualitatively reproduce the trends seen in the observed colors, however there are discrepancies of around a factor of two in flux for the Y0-Y1 dwarfs, with T_eff~350-400K. At T_eff~400K, the problems could be addressed by significantly reducing the NH_3 absorption, for example by halving the abundance of NH_3 possibly by vertical mixing. At T_eff~350K, the discrepancy may be resolved by incorporating thick water clouds. The onset of these clouds might occur over a narrow range in T_eff, as indicated by the observed small change in 5um flux over a large change in J-W2 color. Of the known Y dwarfs, the reddest in J-W2 are WISEP J182831.08+265037.8 and WISE J085510.83-071442.5. We interpret the former as a pair of identical 300-350K dwarfs, and the latter as a 250K dwarf. If these objects are ~3 Gyrs old, their masses are ~10 and ~5 Jupiter-masses respectively.
We present i and z photometry for 25 T dwarfs and one L dwarf. Combined with published photometry, the data show that the i - z, z - Y and z - J colors of T dwarfs are very red, and continue to increase through to the late-type T dwarfs, with a hint of a saturation for the latest types with T_eff ~ 600 K. We present new 0.7-1.0 um and 2.8-4.2 um spectra for the very late-type T dwarf UGPS J072227.51-054031.2, as well as improved astrometry for this dwarf. Examination of the spectral energy distribution using the new and published data, with Saumon & Marley models, shows that the dwarf has T_eff = 505 +/- 10 K, a mass of 3-11 M_Jupiter and an age between 60 Myr and 1 Gyr. This young age is consistent with the thin disk kinematics of the dwarf. The mass range overlaps with that usually considered to be planetary, despite this being an unbound object discovered in the field near the Sun. This apparently young rapid rotator is also undergoing vigorous atmospheric mixing, as determined by the IRAC and WISE-2 4.5 um photometry and the Saumon & Marley models. The optical spectrum for this 500 K object shows clearly detected lines of the neutral alkalis Cs and Rb, which are emitted from deep atmospheric layers with temperatures of 900-1200 K.
57 - D. Saumon 2008
We present new evolution sequences for very low mass stars, brown dwarfs and giant planets and use them to explore a variety of influences on the evolution of these objects. We compare our results with previous work and discuss the causes of the diff erences and argue for the importance of the surface boundary condition provided by atmosphere models including clouds. The L- to T-type ultracool dwarf transition can be accommodated within the Ackerman & Marley (2001) cloud model by varying the cloud sedimentation parameter. We develop a simple model for the evolution across the L/T transition. By combining the evolution calculation and our atmosphere models, we generate colors and magnitudes of synthetic populations of ultracool dwarfs in the field and in galactic clusters. We focus on near infrared color- magnitude diagrams (CMDs) and on the nature of the ``second parameter that is responsible for the scatter of colors along the Teff sequence. Variations in metallicity and cloud parameters, unresolved binaries and possibly a relatively young population all play a role in defining the spread of brown dwarfs along the cooling sequence. We find that the transition from cloudy L dwarfs to cloudless T dwarfs slows down the evolution and causes a pile up of substellar objects in the transition region, in contradiction with previous studies. We apply the same model to the Pleiades brown dwarf sequence. Taken at face value, the Pleiades data suggest that the L/T transition occurs at lower Teff for lower gravity objects. The simulated populations of brown dwarfs also reveal that the phase of deuterium burning produces a distinctive feature in CMDs that should be detectable in ~50-100 Myr old clusters.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا