ترغب بنشر مسار تعليمي؟ اضغط هنا

We show that a scanning capacitance microscope (SCM) can image buried delta-doped donor nanostructures fabricated in Si via a recently developed atomic-precision scanning tunneling microscopy (STM) lithography technique. A critical challenge in compl eting atomic-precision nanoelectronic devices is to accurately align mesoscopic metal contacts to the STM defined nanostructures. Utilizing the SCMs ability to image buried dopant nanostructures, we have developed a technique by which we are able to position metal electrodes on the surface to form contacts to underlying STM fabricated donor nanostructures with a measured accuracy of 300 nm. Low temperature (T=4K) transport measurements confirm successful placement of the contacts to the donor nanostructures.
Recently, a single atom transistor was deterministically fabricated using phosphorus in Si by H-desorption lithography with a scanning tunneling microscope (STM). This milestone in precision, achieved by operating the STM in the conventional tunnelin g mode, typically utilizes very slow ($sim!10^2~mathrm{nm^2/s}$) patterning speeds. By contrast, using the STM in a high voltage ($>10~mathrm{V}$) field emission mode, patterning speeds can be increased by orders of magnitude to $gtrsim!10^4~mathrm{nm^2/s}$. We show that the rapid patterning negligibly affects the functionality of relatively large micron-sized features, which act as contacting pads on these devices. For nanoscale structures, we show that the resulting transport is consistent with the donor incorporation chemistry enhancing the device definition to a scale of $10~mathrm{nm}$ even though the pattering spot size is $40~mathrm{nm}$.
We have investigated asymmetrically shunted Nb/Al-AlO$_x$/Nb direct current (dc) superconducting quantum interference devices (SQUIDs). While keeping the total resistance $R$ identical to a comparable symmetric SQUID with $R^{-1} = R_1^{-1} + R_2^{-1 }$, we shunted only one of the two Josephson junctions with $R = R_{1,2}/2$. Simulations predict that the optimum energy resolution $epsilon$ and thus also the noise performance of such an asymmetric SQUID can be 3--4 times better than that of its symmetric counterpart. Experiments at a temperature of 4.2,K yielded $epsilon approx 32,hbar$ for an asymmetric SQUID with an inductance of $22,rm{pH}$. For a comparable symmetric device $epsilon = 110,hbar$ was achieved, confirming our simulation results.
Intracellular recordings of neuronal membrane potential are a central tool in neurophysiology. In many situations, especially in vivo, the traditional limitation of such recordings is the high electrode resistance, which may cause significant measure ment errors. We introduce a computer-aided technique, Active Electrode Compensation (AEC), based on a digital model of the electrode interfaced in real time with the electrophysiological setup. The characteristics of this model are first estimated using white noise current injection. The electrode and membrane contribution are digitally separated, and the recording is then made by online subtraction of the electrode contribution. Tests comparing AEC to other techniques demonstrate that it yields recordings with improved accuracy. It enables high-frequency recordings in demanding conditions, such as injection of conductance noise in dynamic-clamp mode, not feasible with a single high resistance electrode until now. AEC should be particularly useful to characterize fast phenomena in neurons, in vivo and in vitro.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا