ترغب بنشر مسار تعليمي؟ اضغط هنا

The Nilsson et al. (2006) Lyman-alpha nebula has often been cited as the most plausible example of a Lyman-alpha nebula powered by gravitational cooling. In this paper, we bring together new data from the Hubble Space Telescope and the Herschel Space Observatory as well as comparisons to recent theoretical simulations in order to revisit the questions of the local environment and most likely power source for the Lyman-alpha nebula. In contrast to previous results, we find that this Lyman-alpha nebula is associated with 6 nearby galaxies and an obscured AGN that is offset by $sim$4$approx$30 kpc from the Lyman-alpha peak. The local region is overdense relative to the field, by a factor of $sim$10, and at low surface brightness levels the Lyman-alpha emission appears to encircle the position of the obscured AGN, highly suggestive of a physical association. At the same time, we confirm that there is no compact continuum source located within $sim$2-3$approx$15-23 kpc of the Lyman-alpha peak. Since the latest cold accretion simulations predict that the brightest Lyman-alpha emission will be coincident with a central growing galaxy, we conclude that this is actually a strong argument against, rather than for, the idea that the nebula is gravitationally-powered. While we may be seeing gas within cosmic filaments, this gas is primarily being lit up, not by gravitational energy, but due to illumination from a nearby buried AGN.
We use spatially extended measurements of Ly$alpha$ as well as less optically thick emission lines from an $approx$80 kpc Ly$alpha$ nebula at $zapprox1.67$ to assess the role of resonant scattering and to disentangle kinematic signatures from Ly$alph a$ radiative transfer effects. We find that the Ly$alpha$, CIV, HeII, and CIII] emission lines all tell a similar story in this system, and that the kinematics are broadly consistent with large-scale rotation. First, the observed surface brightness profiles are similar in extent in all four lines, strongly favoring a picture in which the Ly$alpha$ photons are produced in situ instead of being resonantly scattered from a central source. Second, we see low kinematic offsets between Ly$alpha$ and the less optically thick HeII line ($sim$100-200 km s$^{-1}$), providing further support for the argument that the Ly$alpha$ and other emission lines are all being produced within the spatially extended gas. Finally, the full velocity field of the system shows coherent velocity shear in all emission lines: $approx$500 km s$^{-1}$ over the central $approx$50 kpc of the nebula. The kinematic profiles are broadly consistent with large-scale rotation in a gas disk that is at least partially stable against collapse. These observations suggest that the Ly$alpha$ nebula represents accreting material that is illuminated by an offset, hidden AGN or distributed star formation, and that is undergoing rotation in a clumpy and turbulent gas disk. With an implied mass of M(<R=20 kpc)$sim3times10^{11}$ $M_{odot}$, this system may represent the early formation of a large Milky Way mass galaxy or galaxy group.
Using a systematic broad-band search technique, we have carried out a survey for large Lya nebulae (or Lya blobs) at 2<z<3 within 8.5 square degrees of the NOAO Deep Wide-Field Survey (NDWFS) Bootes field, corresponding to a total survey comoving vol ume of ~10^8 h_70^-3 Mpc^3. Here, we present our spectroscopic observations of candidate giant Lya nebulae. Of 26 candidates targeted, 5 were confirmed to have Lya emission at 1.7<z<2.7, four of which were new discoveries. The confirmed Lya nebulae span a range of Lya equivalent widths, colors, sizes, and line ratios, and most show spatially-extended continuum emission. The remaining candidates did not reveal any strong emission lines, but instead exhibit featureless, diffuse, blue continuum spectra. Their nature remains mysterious, but we speculate that some of these might be Lya nebulae lying within the redshift desert (i.e., 1.2<z<1.6). Our spectroscopic follow-up confirms the power of using deep broad-band imaging to search for the bright end of the Lya nebula population across enormous comoving volumes.
Giant Lya nebulae (or Lya blobs) are likely sites of ongoing massive galaxy formation, but the rarity of these powerful sources has made it difficult to form a coherent picture of their properties, ionization mechanisms, and space density. Systematic narrow-band Lya nebula surveys are ongoing, but the small redshift range covered and the observational expense limit the comoving volume that can be probed by even the largest of these surveys and pose a significant problem when searching for such rare sources. We have developed a systematic search technique designed to find large Lya nebulae at 2<z<3 within deep broad-band imaging and have carried out a survey of the 9.4 square degree NOAO Deep Wide-Field Survey (NDWFS) Bootes field. With a total survey comoving volume of ~10^8 h^-3_70 Mpc^3, this is the largest volume survey for Lya nebulae ever undertaken. In this first paper in the series, we present the details of the survey design and a systematically-selected sample of 79 candidates, which includes one previously discovered Lya nebula.
Detailed analysis of the substructure of Lya nebulae can put important constraints on the physical mechanisms at work and the properties of galaxies forming within them. Using high resolution HST imaging of a Lya nebula at z~2.656, we have taken a ce nsus of the compact galaxies in the vicinity, used optical/near-infrared colors to select system members, and put constraints on the morphology of the spatially-extended emission. The system is characterized by (a) a population of compact, low luminosity (~0.1 L*) sources --- 17 primarily young, small (Re~1-2 kpc), disky galaxies including an obscured AGN --- that are all substantially offset (>20 kpc) from the line-emitting nebula; (b) the lack of a central galaxy at or near the peak of the Lya emission; and (c) several nearly coincident, spatially extended emission components --- Lya, HeII, and UV continuum --- that are extremely smooth. These morphological findings are difficult to reconcile with theoretical models that invoke outflows, cold flows, or resonant scattering, suggesting that while all of these physical phenomena may be occurring, they are not sufficient to explain the powering and large extent of Lya nebulae. In addition, although the compact galaxies within the system are irrelevant as power sources, the region is significantly overdense relative to the field galaxy population (by at least a factor of 4). These observations provide the first estimate of the luminosity function of galaxies within an individual Lya nebula system, and suggest that large Lya nebulae may be the seeds of galaxy groups or low-mass clusters.
Recent theoretical work has suggested that Lyman-alpha nebulae could be substantially polarized in the Lyman-alpha emission line, depending on the geometry, kinematics, and powering mechanism at work. Polarization observations can therefore provide a useful constraint on the source of ionization in these systems. In this Letter, we present the first Lyman-alpha polarization measurements for a giant Lyman-alpha nebula at z~2.656. We do not detect any significant linear polarization of the Lyman-alpha emission: P_{Lyman-alpha}=2.6+/-2.8% (corrected for statistical bias) within a single large aperture. The current data also do not show evidence for the radial polarization gradient predicted by some theoretical models. These results rule out singly scattered Lyman-alpha (e.g., from the nearby AGN) and may be inconsistent with some models of backscattering in a spherical outflow. However, the effects of seeing, diminished signal-to-noise ratio, and angle averaging within radial bins make it difficult to put strong constraints on the radial polarization profile. The current constraints may be consistent with higher density outflow models, spherically symmetric infall models, photoionization by star formation within the nebula or the nearby AGN, resonant scattering, or non-spherically symmetric cold accretion (i.e., along filaments). Higher signal-to-noise ratio data probing to higher spatial resolution will allow us to harness the full diagnostic power of polarization observations in distinguishing between theoretical models of giant Lyman-alpha nebulae.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا