ﻻ يوجد ملخص باللغة العربية
The Nilsson et al. (2006) Lyman-alpha nebula has often been cited as the most plausible example of a Lyman-alpha nebula powered by gravitational cooling. In this paper, we bring together new data from the Hubble Space Telescope and the Herschel Space Observatory as well as comparisons to recent theoretical simulations in order to revisit the questions of the local environment and most likely power source for the Lyman-alpha nebula. In contrast to previous results, we find that this Lyman-alpha nebula is associated with 6 nearby galaxies and an obscured AGN that is offset by $sim$4$approx$30 kpc from the Lyman-alpha peak. The local region is overdense relative to the field, by a factor of $sim$10, and at low surface brightness levels the Lyman-alpha emission appears to encircle the position of the obscured AGN, highly suggestive of a physical association. At the same time, we confirm that there is no compact continuum source located within $sim$2-3$approx$15-23 kpc of the Lyman-alpha peak. Since the latest cold accretion simulations predict that the brightest Lyman-alpha emission will be coincident with a central growing galaxy, we conclude that this is actually a strong argument against, rather than for, the idea that the nebula is gravitationally-powered. While we may be seeing gas within cosmic filaments, this gas is primarily being lit up, not by gravitational energy, but due to illumination from a nearby buried AGN.
High-redshift Lyman-alpha blobs are extended, luminous, but rare structures that appear to be associated with the highest peaks in the matter density of the Universe. Their energy output and morphology are similar to powerful radio galaxies, but the
A new but rare sample of spatially extended emission line nebulae, nicknamed Green Beans, was discovered at z~0.3 thanks to strong [OIII] emission, and subsequently shown to be local cousins of the Lyman-alpha (Lya) nebulae found at high redshift. He
Recent theoretical work has suggested that Lyman-alpha nebulae could be substantially polarized in the Lyman-alpha emission line, depending on the geometry, kinematics, and powering mechanism at work. Polarization observations can therefore provide a
We examine the dust geometry and Ly{alpha} scattering in the galaxies of the Lyman Alpha Reference Sample (LARS), a set of 14 nearby (0.02 < $z$ < 0.2) Ly{alpha} emitting and starbursting systems with Hubble Space Telescope Ly{alpha}, H{alpha}, and H
We demonstrate a method for reconstructing the weak lensing potential from the Lyman-$alpha$ forest data. We derive an optimal estimator for the lensing potential on the sky based on the correlation between pixels in real space. This method effective