ترغب بنشر مسار تعليمي؟ اضغط هنا

Results of decay spectroscopy on nuclei in vicinity of the doubly magic 48Ni are presented. The measurements were performed with a Time Projection Chamber with optical readout which records tracks of ions and protons in the gaseous volume. Six decays of 48Ni including four events of two-proton ground-state radioactivity were recorded. An advanced reconstruction procedure yielded the 2p decay energy for 48Ni of Q2p = 1.29(4) MeV. In addition, the energy spectra of b{eta}-delayed protons emitted in the decays of 44Cr and 46Fe, as well as half-lives and branching ratios were determined. The results were found to be consistent with the previous measurements made with Si detectors. A new proton line in the decay of 44Cr corresponding to the decay energy of 760 keV is reported. The first evidence for the b{eta}2p decay of 46 Fe, based on one clear event, is shown.
The last decades brought an impressive progress in synthesizing and studying properties of nuclides located very far from the beta stability line. Among the most fundamental properties of such exotic nuclides, usually established first, is the half-l ife, possible radioactive decay modes, and their relative probabilities. When approaching limits of nuclear stability, new decay modes set in. First, beta decays become accompanied by emission of nucleons from highly excited states of daughter nuclei. Second, when the nucleon separation energy becomes negative, nucleons start to be emitted from the ground state. Here, we present a review of the decay modes occurring close to the limits of stability. The experimental methods used to produce, identify and detect new species and their radiation are discussed. The current theoretical understanding of these decay processes is overviewed. The theoretical description of the most recently discovered and most complex radioactive process - the two-proton radioactivity - is discussed in more detail.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا