ترغب بنشر مسار تعليمي؟ اضغط هنا

Proton spectroscopy of 48Ni, 46Fe, and 44Cr

44   0   0.0 ( 0 )
 نشر من قبل Marek Pfutzner
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Results of decay spectroscopy on nuclei in vicinity of the doubly magic 48Ni are presented. The measurements were performed with a Time Projection Chamber with optical readout which records tracks of ions and protons in the gaseous volume. Six decays of 48Ni including four events of two-proton ground-state radioactivity were recorded. An advanced reconstruction procedure yielded the 2p decay energy for 48Ni of Q2p = 1.29(4) MeV. In addition, the energy spectra of b{eta}-delayed protons emitted in the decays of 44Cr and 46Fe, as well as half-lives and branching ratios were determined. The results were found to be consistent with the previous measurements made with Si detectors. A new proton line in the decay of 44Cr corresponding to the decay energy of 760 keV is reported. The first evidence for the b{eta}2p decay of 46 Fe, based on one clear event, is shown.

قيم البحث

اقرأ أيضاً

We report on the observation of excited states in the neutron-deficient phosphorus isotopes $^{26,27,28}$P via in-beam gamma-ray spectroscopy with both high-efficiency and high-resolution detector arrays. In $^{26}$P, a previously-unobserved level ha s been identified at 244(3) keV, two new measurements of the astrophysically-important 3/2$^+$ resonance in $^{27}$P have been performed, gamma decays have been assigned to the proton-unbound levels at 2216 keV and 2483 keV in $^{28}$P, and the gamma-ray lineshape method has been used to make the first determination of the lifetimes of the two lowest-lying excited states in $^{28}$P. The expected Thomas-Ehrman shifts were calculated and applied to levels in the mirror nuclei. The resulting level energies from this procedure were then compared with the energies of known states in $^{26,27,28}$P.
88 - A. Mutschler 2016
The structure of $^{35}$P was studied with a one-proton knockout reaction at88~MeV/u from a $^{36}$S projectile beam at NSCL. The $gamma$ rays from thedepopulation of excited states in $^{35}$P were detected with GRETINA, whilethe $^{35}$P nuclei wer e identified event-by-event in the focal plane of theS800 spectrograph. The level scheme of $^{35}$P was deduced up to 7.5 MeV using$gamma-gamma$ coincidences. The observed levels were attributed to protonremovals from the $sd$-shell and also from the deeply-bound $p_{1/2}$ orbital.The orbital angular momentum of each state was derived from the comparisonbetween experimental and calculated shapes of individual ($gamma$-gated)parallel momentum distributions. Despite the use of different reactions andtheir associate models, spectroscopic factors, $C^2S$, derived from the$^{36}$S $(-1p)$ knockout reaction agree with those obtained earlier from$^{36}$S($d$, uc{3}{He}) transfer, if a reduction factor $R_s$, as deducedfrom inclusive one-nucleon removal cross sections, is applied to the knockout transitions.In addition to the expected proton-hole configurations, other states were observedwith individual cross sections of the order of 0.5~mb. Based on their shiftedparallel momentum distributions, their decay modes to negative parity states,their high excitation energy (around 4.7~MeV) and the fact that they were notobserved in the ($d$, uc{3}{He}) reaction, we propose that they may resultfrom a two-step mechanism or a nucleon-exchange reaction with subsequent neutronevaporation. Regardless of the mechanism, that could not yet be clarified, thesestates likely correspond to neutron core excitations in uc{35}{P}. Thisnewly-identified pathway, although weak, offers the possibility to selectivelypopulate certain intruder configurations that are otherwise hard to produceand identify.
367 - M. Fujiwara 2000
Discrete Gamow-Teller (GT) transitions, 176Yb-->176Lu at low excitation energies have been measured via the (3He,t) reaction at 450 MeV and at 0 degrees. For 176Yb, two low-lying states are observed, setting low thresholds Q(neutrino)=301 and 445 keV for neutrino capture. Capture rates estimated from the measured GT strengths, the simple two-state excitation structure, and the low Q(neutrino) in Yb--Lu indicate that Yb-based neutrino-detectors are well suited for a direct measurement of the complete sub-MeV solar electron-neutrino spectrum (including pp neutrinos) where definitive effects of flavor conversion are expected.
The unbound nucleus $^{18}$Na, the intermediate nucleus in the two-proton radioactivity of $^{19}$Mg, was studied by the measurement of the resonant elastic scattering reaction $^{17}$Ne(p,$^{17}$Ne)p performed at 4 A.MeV. Spectroscopic properties of the low-lying states were obtained in a R-matrix analysis of the excitation function. Using these new results, we show that the lifetime of the $^{19}$Mg radioactivity can be understood assuming a sequential emission of two protons via low energy tails of $^{18}$Na resonances.
389 - A. Gade , P. Adrich , D. Bazin 2008
We report on the first in-beam $gamma$-ray spectroscopy of uc{23}{Al} using two different reactions at intermediate beam energies: inelastic scattering off uc{9}{Be} and heavy-ion induced one-proton pickup, uc{9}{Be}( uc{22}{Mg}, uc{23}{Al}$+gamma $)X, at 75.1 MeV/nucleon. A $gamma$-ray transition at 1616(8) keV -- exceeding the proton separation energy by 1494 keV -- was observed in both reactions. From shell model and proton decay calculations we argue that this $gamma$-ray decay proceeds from the core-excited $7/2^+$ state to the $5/2^+$ ground state of uc{23}{Al}. The proposed nature of this state, $[ uc{22}{Mg}(2^+_1) otimes pi d_{5/2}]_{7/2+}$, is consistent with the presence of a gamma-branch and with the population of this state in the two reactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا