ترغب بنشر مسار تعليمي؟ اضغط هنا

75 - G. Tagliaferri 2015
The most powerful blazars are the flat spectrum radio quasars whose emission is dominated by a Compton component peaking between a few hundred keV and a few hundred MeV. We selected two bright blazars, PKS 2149-306 at redshift z=2.345 and S5 0836+710 at z=2.172, in order to observe them in the hard X-ray band with the NuSTAR satellite. In this band the Compton component is rapidly rising almost up to the peak of the emission. Simultaneous soft-X-rays and UV-optical observations were performed with the Swift satellite, while near-infrared (NIR) data were obtained with the REM telescope. To study their variability, we repeated these observations for both sources on a timescale of a few months. While no fast variability was detected during a single observation, both sources were found to be variable in the X-ray band, up to 50%, between the two observations, with larger variability at higher energies. No variability was detected in the optical/NIR band. These data together with Fermi-LAT, WISE and other literature data are then used to study the overall spectral energy distributions (SEDs) of these blazars. Although the jet non-thermal emission dominates the SED, it leaves the UV band unhidden, allowing us to detect the thermal emission of the disc and to estimate the mass of the black hole. The non-thermal emission is well reproduced by a one-zone leptonic model. The non-thermal radiative processes are synchrotron, self-Compton and external Compton using seed photons from both the broad-line region (BLR) and the torus. We find that our data are better reproduced if we assume that the location of the dissipation region of the jet, R_diss, is in-between the torus, (at R_torus), and the BLR (R_torus>R_diss>R_BLR). The observed variability is explained by changing a minimum number of model parameters by a very small amount.
141 - A. Tramacere 2009
We present results from a deep spectral analysis of all the Swift observations of Mrk 421 from April 2006 to July 2006, when it reached its largest X-ray flux recorded until 2006. The peak flux was about 85 milli-Crab in the 2.0-10.0 keV band, with t he peak energy (Ep) of the spectral energy distribution (SED) laying often at energies larger than 10 keV. We performed spectral analysis of the Swift observations investigating the trends of the spectral parameters in terms of acceleration and energetic features phenomenologically linked to the SSC model parameters, predicting their effects in the gamma-ray band, in particular the spectral shape expected in the Fermi Gamma-ray Space Telescope-LAT band. We confirm that the X-ray spectrum is well described by a log-parabolic distribution close to Ep, with the peak flux of the SED (Sp) being correlated with Ep, and Ep anti-correlated with the curvature parameter (b). During the most energetic flares the UV-to-soft-X-ray spectral shape requires an electron distribution spectral index s about 2.3. Present analysis shows that the UV-to-X-ray emission from Mrk 421 is likely to be originated by a population of electrons that is actually curved, with a low energy power-law tail. The observed spectral curvature is consistent both with stochastic acceleration or energy dependent acceleration probability mechanisms, whereas the power-law slope form XRT-UVOT data is very close to that inferred from the GRBs X-ray afterglow and in agreement with the universal first-order relativistic shock acceleration models. This scenario hints that the magnetic turbulence may play a twofold role: spatial diffusion relevant to the first order process and momentum diffusion relevant to the second order process.
64 - A. Maselli , P. Giommi , M. Perri 2007
We studied the temporal and spectral evolution of the synchrotron emission from the high energy peaked BL Lac object 1E 1207.9+3945. Two recent observations have been performed by the XMM-Newton and Swift satellites; we carried out X-ray spectral ana lysis for both of them, and photometry in optical-ultraviolet filters for the Swift one. Combining the results thus obtained with archival data we built the long-term X-ray light curve, spanning a time interval of 26 years, and the Spectral Energy Distribution (SED) of this source. The light curve shows a large flux increasing, about a factor of six, in a time interval of a few years. After reaching its maximum in coincidence with the XMM-Newton pointing in December 2000 the flux decreased in later years, as revealed by Swift. The very good statistics available in the 0.5-10 keV XMM-Newton X-ray spectrum points out a highly significant deviation from a single power law. A log-parabolic model with a best fit curvature parameter of 0.25 and a peak energy at ~1 keV describes well the spectral shape of the synchrotron emission. The simultaneous fit of Swift UVOT and XRT data provides a milder curvature (b~0.1) and a peak at higher energies (~15 keV), suggesting a different state of source activity. In both cases UVOT data support the scenario of a single synchrotron emission component extending from the optical/UV to the X-ray band. New X-ray observations are important to monitor the temporal and spectral evolution of the source; new generation gamma-ray telescopes like AGILE and GLAST could for the first time detect its inverse Compton emission.
The multi-frequency Sedentary Survey is a flux limited, statistically well-defined sample of highly X-ray dominated BL Lacertae objects (HBLs) which includes 150 sources. In this paper, the third of the series, we report the results of a dedicated op tical spectroscopy campaign that, together with results from other independent optical follow up programs, led to the spectroscopic identification of all sources in the sample. We carried out a systematic spectroscopic campaign for the observation of all unidentified objects of the sample using the ESO 3.6m, the KPNO 4m, and the TNG optical telescopes. We present new identifications and optical spectra for 76 sources, 50 of which are new BL Lac objects, 18 are sources previously referred as BL Lacs but for which no redshift information was available, and 8 are broad emission lines AGNs. We find that the multi-frequency selection technique used to build the survey is highly efficient (about 90%) in selecting BL Lacs objects. We present positional and spectroscopic information for all confirmed BL Lac objects. Our data allowed us to determined 36 redshifts out of the 50 new BL Lacs and 5 new redshifts for the previously known objects. The redshift distribution of the complete sample is presented and compared with that of other BL Lacs samples. For 26 sources without recognizable absorption features, we calculated lower limits to the redshift using a method based on simulated optical spectra with different ratios between jet and galaxy emission. For a subsample of 38 object with high-quality spectra, we find a correlation between the optical spectral slope, the 1.4 GHz radio luminosity, and the Ca H&K break value, indicating that for powerful/beamed sources the optical light is dominated by the non-thermal emission from the jet.
We present the results of a detailed spectral and temporal analysis of Swift and XMM-Newton observations of the high redshift (z=3.969) GRB 050730. The X-ray afterglow of GRB 050730 was found to decline with time with superimposed intense flaring act ivity that extended over more than two orders of magnitude in time. Seven distinct re-brightening events starting from 236 s up to 41.2 ks after the burst were observed. The underlying decay of the afterglow was well described by a double broken power-law model with breaks at t_1= 237 +/- 20 s and t_2 = 10.1 (-2.2) (+4.6) ks. The temporal decay slopes before, between and after these breaks were alpha_1 = 2.1 +/- 0.3, alpha_2 = 0.44 (-0.08) (+0.14) and alpha_3 = 2.40 (+0.07) (-0.09), respectively. The spectrum of the X-ray afterglow was well described by a photoelectrically absorbed power-law with an absorbing column density N_H=(1.28 +/- 0.26) 10^22 cm^-2 in the host galaxy. Strong X-ray spectral evolution during the flaring activity was present. In the majority of the flares (6/7) the ratio Delta_t/t_p between the duration of the event and the time when the flare peaks was nearly constant and about 0.6-0.7. We showed that the observed spectral and temporal properties of the first three flares are consistent with being due both to high-latitude emission, as expected if the flares were produced by late internal shocks, or to refreshed shocks, i.e. late time energy injections into the main afterglow shock by slow moving shells ejected from the central engine during the prompt phase. The event fully satisfies the E_p-E_iso Amati relation while is not consistent with the E_p-E_jet Ghirlanda relation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا