ترغب بنشر مسار تعليمي؟ اضغط هنا

The 26 year-long X-ray light curve and the X-ray spectrum of the BL Lac Object 1E 1207.9+3945 in its brightest state

65   0   0.0 ( 0 )
 نشر من قبل Alessandro Maselli Dr.
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We studied the temporal and spectral evolution of the synchrotron emission from the high energy peaked BL Lac object 1E 1207.9+3945. Two recent observations have been performed by the XMM-Newton and Swift satellites; we carried out X-ray spectral analysis for both of them, and photometry in optical-ultraviolet filters for the Swift one. Combining the results thus obtained with archival data we built the long-term X-ray light curve, spanning a time interval of 26 years, and the Spectral Energy Distribution (SED) of this source. The light curve shows a large flux increasing, about a factor of six, in a time interval of a few years. After reaching its maximum in coincidence with the XMM-Newton pointing in December 2000 the flux decreased in later years, as revealed by Swift. The very good statistics available in the 0.5-10 keV XMM-Newton X-ray spectrum points out a highly significant deviation from a single power law. A log-parabolic model with a best fit curvature parameter of 0.25 and a peak energy at ~1 keV describes well the spectral shape of the synchrotron emission. The simultaneous fit of Swift UVOT and XRT data provides a milder curvature (b~0.1) and a peak at higher energies (~15 keV), suggesting a different state of source activity. In both cases UVOT data support the scenario of a single synchrotron emission component extending from the optical/UV to the X-ray band. New X-ray observations are important to monitor the temporal and spectral evolution of the source; new generation gamma-ray telescopes like AGILE and GLAST could for the first time detect its inverse Compton emission.

قيم البحث

اقرأ أيضاً

We present an X-ray image of the BL Lacertae object OJ287 revealing a long jet, curved by 55 degrees and extending 20, or 90 kpc from the nucleus. This de-projects to >1 Mpc based on the viewing angle on parsec scales. Radio emission follows the gene ral X-ray morphology but extends even farther from the nucleus. The upper limit to the isotropic radio luminosity, ~2E24 W/Hz, places the source in the Fanaroff-Riley 1 (FR 1) class, as expected for BL Lac objects. The spectral energy distribution indicates that the extended X-ray emission is from inverse Compton scattering of cosmic microwave background photons. In this case, the derived magnetic field is B ~ 5 microGauss, the minimum electron energy is 7-40 m_e c^2, and the Doppler factor is delta ~ 8 in a knot 8 from the nucleus. The minimum total kinetic power of the jet is 1-2E45 erg/s. Upstream of the bend, the width of the X-ray emission in the jet is about half the projected distance from the nucleus. This implies that the highly relativistic bulk motion is not limited to an extremely thin spine, as has been proposed previously for FR 1 sources. The bending of the jet, the deceleration of the flow from parsec to kiloparsec scales, and the knotty structure can all be caused by standing shocks inclined by ~7 degrees to the jet axis. Moving shocks resulting from major changes in the flow properties can also reproduce the knotty structure, but such a model does not explain as many of the observational details.
56 - D. W. Fox 2000
We report on multi-epoch X-ray observations of the Type IIn (narrow emission line) supernova SN 1995N with the ROSAT and ASCA satellites. The January 1998 ASCA X-ray spectrum is well fitted by a thermal bremsstrahlung (kT~10 keV, N_H~6e20 cm^-2) or p ower-law (alpha~1.7, N_H~1e21 cm^-2) model. The X-ray light curve shows evidence for significant flux evolution between August 1996 and January 1998: the count rate from the source decreased by 30% between our August 1996 and August 1997 ROSAT observations, and the X-ray luminosity most likely increased by a factor of ~2 between our August 1997 ROSAT and January 1998 ASCA observations, although evolution of the spectral shape over this interval is not ruled out. The high X-ray luminosity, L_X~1e41 erg/sec, places SN 1995N in a small group of Type IIn supernovae with strong circumstellar interaction, and the evolving X-ray luminosity suggests that the circumstellar medium is distributed inhomogeneously.
91 - G. Tagliaferri 2003
The blazar 1ES 1959+650 was observed twice by BeppoSAX in September 2001 simultaneously with optical observations. We report here the X-ray data together with the optical, R_C magnitude, light curve since August 1995. The BeppoSAX observations were t riggered by an active X-ray status of the source. The X-ray spectra are brighter than the previously published X-ray observations, although the source was in an even higher state a few months later, as monitored by the ASM onboard RossiXTE, when it was also detected to flare in the TeV band. Our X-ray spectra are well represented by a continuosly curved model up to 45 keV and are interpreted as synchrotron emission, with the peak moving to higher energies. This is also confirmed by the slope of the X-ray spectrum which is harder than in previous observations. Based on our optical and X-ray data, the synchrotron peak turns out to be in the range 0.1-0.7 keV. We compare our data with non simultaneous radio to TeV data and model the spectral energy distribution with a homogeneous, one-zone synchrotron inverse Compton model. We derive physical parameters that are typical of low power High Energy peaked Blazar, characterised by a relatively large beaming factor, low luminosity and absence of external seed photons.
76 - A. Wolter 2007
We have observed 1ES 1426+428 with INTEGRAL detecting it up to $sim$150 keV. The spectrum is hard, confirming that this source is an extreme BL Lac object, with a synchrotron component peaking, in a $ u F_ u$ plot, at or above 100 keV, resembling the hard states of Mkn 501 and 1ES 2344+514. All these three sources are TeV emitters, with 1ES 1426+428 lying at a larger redshift (z=0.129): for this source the absorption of high energy photons by the IR cosmic background is particularly relevant. The observed hard synchrotron tail helps the modeling of its spectral energy distribution, giving information on the expected intrinsic shape and flux in the TeV band. This in turn constrains the amount of the poorly known IR background.
117 - Alok C. Gupta 2009
We withdraw our claim that a component in an XMM-Newton satellite light curve of the BL Lacertae object S5 0716 + 714 shows quasi-periodic oscillations (QPOs) of $sim$30 minutes. Although both our original periodogram and wavelet analyses gave consis tent results, the data do not lead to a statistically significant result once red-noise at low frequencies is properly taken into account for periodogram analyses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا