ترغب بنشر مسار تعليمي؟ اضغط هنا

We combine HST/WFC3 imaging and G141 grism observations from the CANDELS and 3D-HST surveys to produce a catalog of grism spectroscopic redshifts for galaxies in the CANDELS/GOODS-South field. The WFC3/G141 grism spectra cover a wavelength range of 1 .1<lambda<1.7 microns with a resolving power of R~130 for point sources, thus providing rest-frame optical spectra for galaxies out to z~3.5. The catalog is selected in the H-band (F160W) and includes both galaxies with and without previously published spectroscopic redshifts. Grism spectra are extracted for all H-band detected galaxies with H<24 and a CANDELS photometric redshift z_phot > 0.6. The resulting spectra are visually inspected to identify emission lines and redshifts are determined using cross-correlation with empirical spectral templates. To establish the accuracy of our redshifts, we compare our results against high-quality spectroscopic redshifts from the literature. Using a sample of 411 control galaxies, this analysis yields a precision of sigma_NMAD=0.0028 for the grism-derived redshifts, which is consistent with the accuracy reported by the 3D-HST team. Our final catalog covers an area of 153 square arcmin and contains 1019 redshifts for galaxies in GOODS-S. Roughly 60% (608/1019) of these redshifts are for galaxies with no previously published spectroscopic redshift. These new redshifts span a range of 0.677 < z < 3.456 and have a median redshift of z=1.282. The catalog contains a total of 234 new redshifts for galaxies at z>1.5. In addition, we present 20 galaxy pair candidates identified for the first time using the grism redshifts in our catalog, including four new galaxy pairs at z~2, nearly doubling the number of such pairs previously identified.
Kink bound states in the one dimensional ferromagnetic Ising chain compound CoNb$_2$O$_6$ have been studied using high resolution time-domain terahertz spectroscopy in zero applied magnetic field. When magnetic order develops at low temperature, nine bound states of kinks become visible. Their energies can be modeled exceedingly well by the Airy function solutions to a 1D Schrodinger equation with a linear confining potential. This sequence of bound states terminates at a threshold energy near two times the energy of the lowest bound state. Above this energy scale we observe a broad feature consistent with the onset of the two particle continuum. At energies just below this threshold we observe a prominent excitation that we interpret as a novel bound state of bound states -- two pairs of kinks on neighboring chains.
A promising approach to the fabrication of materials with nanoscale features is the transfer of liquid-crystalline structure to polymers. However, this has not been achieved in systems with full three-dimensional periodicity. Here we demonstrate the fabrication of self-assembled three-dimensional nanostructures by polymer templating blue phase I, a chiral liquid crystal with cubic symmetry. Blue phase I was photopolymerized and the remaining liquid crystal removed to create a porous free-standing cast which retains the chiral three-dimensional structure of the blue phase, yet contains no chiral additive molecules. The cast may in turn be used as a hard template for the fabrication of new materials. By refilling the cast with an achiral nematic liquid crystal, we created templated blue phases which have unprecedented thermal stability in the range -125 to 125 [degrees symbol]C, and that act both as mirrorless lasers and switchable electro-optic devices. Blue-phase templated materials will facilitate advances in device architectures for photonics applications in particular.
Liquid crystalline polymers are materials of considerable scientific interest and technological value to society [1-3]. An important subset of such materials exhibit rubber-like elasticity; these can combine the remarkable optical properties of liqui d crystals with the favourable mechanical properties of rubber and, further, exhibit behaviour not seen in either type of material independently [2]. Many of their properties depend crucially on the particular mesophase employed. Stretchable liquid crystalline polymers have previously been demonstrated in the nematic, chiral nematic, and smectic mesophases [2,4]. Here were report the fabrication of a stretchable gel of blue phase I, which forms a self-assembled, three-dimensional photonic crystal that may have its optical properties manipulated by an applied strain and, further, remains electro-optically switchable under a moderate applied voltage. We find that, unlike its undistorted counterpart, a mechanically deformed blue phase exhibits a Pockels electro-optic effect, which sets out new theoretical challenges and new possibilities for low-voltage electro-optic devices.
We present high precision measurements of polarization rotations in the frequency range from 0.1 to 2.5 THz using a polarization modulation technique. A motorized stage rotates a polarizer at ~80 Hz, and the resulting modulation of the polarization i s measured by a lock-in technique. We achieve an accuracy of 0.05{deg} (900 {mu}rad) and a precision of 0.02{deg} (350 {mu}rad) for small rotation angles. A detailed mathematical description of the technique is presented, showing its ability to fully characterize elliptical polarizations from 0.1 to 2.5 THz.
72 - F. Castles , S. M. Morris , 2011
The flexoelectric conversion of mechanical to electrical energy in nematic liquid crystals is investigated using continuum theory. Since the electrical energy produced cannot exceed the mechanical energy supplied, and vice-versa, upper bounds are imp osed on the magnitudes of the flexoelectric coefficients in terms of the elastic and dielectric coefficients. For conventional values of the elastic and dielectric coefficients, it is shown that the flexoelectric coefficients may not be larger than a few tens of pC/m. This has important consequences for the future use of such flexoelectric materials in devices and the related energetics of distorted equilibrium structures.
We show theoretically that flexoelectricity stabilizes blue phases in chiral liquid crystals. Induced internal polarization reduces the elastic energy cost of splay and bend deformations surrounding singular lines in the director field. The energy of regions of double twist is unchanged. This in turn reduces the free energy of the blue phase with respect to that of the chiral nematic phase, leading to stability over a wider temperature range. The theory explains the discovery of large temperature range blue phases in highly flexoelectric bimesogenic and bent-core materials, and predicts how this range may be increased further.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا