ترغب بنشر مسار تعليمي؟ اضغط هنا

224 - B. Gaveau , L. Granger , M. Moreau 2014
Many thermodynamic relations involve inequalities, with equality if a process does not involve dissipation. In this article we provide equalities in which the dissipative contribution is shown to involve the relative entropy (a.k.a. Kullback-Leibler divergence). The processes considered are general time evolutions both in classical and quantum mechanics, and the initial state is sometimes thermal, sometimes partially so. By calculating a transport coefficient we show that indeed---at least in this case---the source of dissipation in that coefficient is the relative entropy.
116 - B. Gaveau , L. Granger , M. Moreau 2013
Many thermodynamic relations involve inequalities, with equality if a process does not involve dissipation. In this article we provide equalities in which the dissipative contribution is shown to involve the relative entropy (a.k.a. Kullback-Leibler divergence). The processes considered are general time evolutions both in classical and quantum mechanics, and the initial state is sometimes thermal, sometimes partially so. As an application, the relative entropy is related to transport coefficients.
Several recent theories address the efficiency of a macroscopic thermodynamic motor at maximum power and question the so-called Curzon-Ahlborn (CA) efficiency. Considering the entropy exchanges and productions in an n-sources motor, we study the maxi mization of its power and show that the controversies are partly due to some imprecision in the maximization variables. When power is maximized with respect to the system temperatures, these temperatures are proportional to the square root of the corresponding source temperatures, which leads to the CA formula for a bi-thermal motor. On the other hand, when power is maximized with respect to the transitions durations, the Carnot efficiency of a bi-thermal motor admits the CA efficiency as a lower bound, which is attained if the duration of the adiabatic transitions can be neglected. Additionally, we compute the energetic efficiency, or sustainable efficiency, which can be defined for n sources, and we show that it has no other universal upper bound than 1, but that in certain situations, favorable for power production, it does not exceed 1/2.
This review examines intermittent target search strategies, which combine phases of slow motion, allowing the searcher to detect the target, and phases of fast motion during which targets cannot be detected. We first show that intermittent search str ategies are actually widely observed at various scales. At the macroscopic scale, this is for example the case of animals looking for food ; at the microscopic scale, intermittent transport patterns are involved in reaction pathway of DNA binding proteins as well as in intracellular transport. Second, we introduce generic stochastic models, which show that intermittent strategies are efficient strategies, which enable to minimize the search time. This suggests that the intrinsic efficiency of intermittent search strategies could justify their frequent observation in nature. Last, beyond these modeling aspects, we propose that intermittent strategies could be used also in a broader context to design and accelerate search processes.
Search problems at various scales involve a searcher, be it a molecule before reaction or a foraging animal, which performs an intermittent motion. Here we analyze a generic model based on such type of intermittent motion, in which the searcher alter nates phases of slow motion allowing detection, and phases of fast motion without detection. We present full and systematic results for different modeling hypotheses of the detection mechanism in space dimension 1, 2 and 3. Our study completes and extends the results of our recent letter [Loverdo {it et al.} Nature Physics {bf 4}, 134 (2008)] and gives the necessary calculation details. In addition, a new modeling of the detection phase is presented. We show that the mean target detection time can be minimized as a function of the mean duration of each phase in dimension 1, 2 and 3. Importantly, this optimal strategy does not depend on the details of the modeling of the slow detection phase, which shows the robustness of our results. We believe that this systematic analysis can be used as a basis to study quantitatively various real search problems involving intermittent behaviors.
We extend certain basic and general concepts of thermodynamics to discrete Markov systems exchanging work and heat with reservoirs. In this framework we show that the celebrated Clausius inequality can be generalized and becomes an equality, signific antly extending several recent results. We further show that achieving zero dissipation in a system implies that detailed balance obtains, and as a consequence there is zero power production. We obtain inequalities for power production under more general circumstances and show that near equilibrium obtaining maximum power production requires dissipation to be of the same order of magnitude.
The cell cytoskeleton is a striking example of active medium driven out-of-equilibrium by ATP hydrolysis. Such activity has been shown recently to have a spectacular impact on the mechanical and rheological properties of the cellular medium, as well as on its transport properties : a generic tracer particle freely diffuses as in a standard equilibrium medium, but also intermittently binds with random interaction times to motor proteins, which perform active ballistic excursions along cytoskeletal filaments. Here, we propose for the first time an analytical model of transport limited reactions in active media, and show quantitatively how active transport can enhance reactivity for large enough tracers like vesicles. We derive analytically the average interaction time with motor proteins which optimizes the reaction rate, and reveal remarkable universal features of the optimal configuration. We discuss why active transport may be beneficial in various biological examples: cell cytoskeleton, membranes and lamellipodia, and tubular structures like axons.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا