ترغب بنشر مسار تعليمي؟ اضغط هنا

We review progress at UCSB on understanding the physics of decoherence in superconducting qubits. Although many decoherence mechanisms were studied and fixed in the last 5 years, the most important ones are two-level state defects in amorphous dielec trics, non-equilibrium quasiparticles generated from stray infrared light, and radiation to slotline modes. With improved design, the performance of integrated circuit transmons using the Xmon design are now close to world record performance: these devices have the advantage of retaining coherence when scaled up to 9 qubits.
We show how capacitance can be calculated simply and efficiently for electrodes cut in a 2-dimensional ground plane. These results are in good agreement with exact formulas and numerical simulations.
Topological quantum error correction codes are known to be able to tolerate arbitrary local errors given sufficient qubits. This includes correlated errors involving many local qubits. In this work, we quantify this level of tolerance, numerically st udying the effects of many-qubit errors on the performance of the surface code. We find that if increasingly large area errors are at least moderately exponentially suppressed, arbitrarily reliable quantum computation can still be achieved with practical overhead. We furthermore quantify the effect of non-local two-qubit correlated errors, which would be expected in arrays of qubits coupled by a polynomially decaying interaction, and when using many-qubit coupling devices. We surprisingly find that the surface code is very robust to this class of errors, despite a provable lack of a threshold error rate when such errors are present.
62 - M. Martinis , N. Perkovic 2010
The gravitational energy shift for photons is extended to all mass-equivalent energies $E = mc^2$, obeying the quantum condition $E = h u$.On an example of a relativistic binary system, it was shown that the gravitational energy shift would imply,in contrast to Newtonian gravity, the gravitational attraction between full mass-equivalent energies. The corresponding space-time metric becomes exponential. A good agreement was found with all results of weak field tests of General relativity. The strong field effects in a binary system can be easily studied. A long standing problems of Pioneer and other flyby anomalies were also discussed in connection with the violation of total energy conservation. It was shown that relatively small energy non-conservation during the change of the orbit type could explain these persistent anomalies.
46 - Jiansong Gao 2008
We present measurements of the low--temperature excess frequency noise of four niobium superconducting coplanar waveguide microresonators, with center strip widths $s_r$ ranging from 3 $mu$m to 20 $mu$m. For a fixed internal power, we find that the f requency noise decreases rapidly with increasing center strip width, scaling as $1/s_r^{1.6}$. We show that this geometrical scaling is readily explained by a simple semi-empirical model which assumes a surface distribution of independent two-level system fluctuators. These results allow the resonator geometry to be optimized for minimum noise.
133 - M. Martinis , M. Sosic 2007
Self similar 3D distributions of point-particles, with a given quasifractal dimension D, were generated on a Menger sponge model and then compared with textit{2dfGRS} and textit{Virgo project} data footnote{http://www.mso.anu.edu.au/2dFGRS/, http://w ww.mpa-garching.mpg.de/Virgo/}. Using the principle of local knowledge, it is argued that in a finite volume of space only the two-point minus estimator is acceptable in the correlation analysis of self similar spatial distributions. In this sense, we have simplified the Pietronero-Labini correlative analysis by defining a K-minus estimator, which when applied to 2dfGRS data revealed the quasifractal dimension $Dapprox 2$ as expected. In our approach the K-minus estimator is used only locally. Dimensions between D = 1 and D = 1.7, as suggested by the standard $xi (r)$ analysis, were found to be fallacy of the method. In order to visualize spatial quasifractal objects, we created a small software program called textit{RoPo} (Rotate Points). This program illustrates and manifests local correlative analysis in which the visual inspection emerged as a first step and a key part of the method. Finally, we discuss importance and perspective of the visual inspection on available real and simulated distributions. It is also argued that results of contemporary cosmological simulations do not faithfully represent real data, as they show a formation of ever increasing collapsars. We consent that 2dfGRS data are reminiscent of some kind of underlying turbulence like effects in action.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا