ترغب بنشر مسار تعليمي؟ اضغط هنا

By exploiting the VLA-COSMOS and the Herschel-PEP surveys, we investigate the Far Infrared (FIR) properties of radio-selected AGN. To this purpose, from VLA-COSMOS we considered the 1537, F[1.4 GHz]>0.06 mJy sources with a reliable redshift estimate, and sub-divided them into star-forming galaxies and AGN solely on the basis of their radio luminosity. The AGN sample is complete with respect to radio selection at all z<~3.5. 832 radio sources have a counterpart in the PEP catalogue. 175 are AGN. Their redshift distribution closely resembles that of the total radio-selected AGN population, and exhibits two marked peaks at z~0.9 and z~2.5. We find that the probability for a radio-selected AGN to be detected at FIR wavelengths is both a function of radio power and redshift, whereby powerful sources are more likely to be FIR emitters at earlier epochs. This is due to two distinct effects: 1) at all radio luminosities, FIR activity monotonically increases with look-back time and 2) radio activity of AGN origin is increasingly less effective at inhibiting FIR emission. Radio-selected AGN with FIR emission are preferentially located in galaxies which are smaller than those hosting FIR-inactive sources. Furthermore, at all z<~2, there seems to be a preferential (stellar) mass scale M ~[10^{10}-10^{11}] Msun which maximizes the chances for FIR emission. We find such FIR (and MIR) emission to be due to processes indistinguishable from those which power star-forming galaxies. It follows that radio emission in at least 35% of the entire AGN population is the sum of two contributions: AGN accretion and star-forming processes within the host galaxy.
By making use of Herschel-PEP observations of the COSMOS and Extended Groth Strip fields, we have estimated the dependence of the clustering properties of FIR-selected sources on their 100um fluxes. Our analysis shows a tendency for the clustering st rength to decrease with limiting fluxes: r0(S100um >8 mJy)~4.3 Mpc and r0(S100um >5 mJy)~5.8 Mpc. These values convert into minimum halo masses Mmin~10^{11.6} Msun for sources brighter than 8 mJy and Mmin~10^{12.4} Msun for S100um > 5 mJy galaxies. We show such an increase of the clustering strength to be due to an intervening population of z~2 sources, which are very strongly clustered and whose relative contribution, equal to about 10% of the total counts at S100um > 2 mJy, rapidly decreases for brighter flux cuts. By removing such a contribution, we find that z <~ 1 FIR galaxies have approximately the same clustering properties, irrespective of their flux level. The above results were then used to investigate the intrinsic dependence on cosmic epoch of the clustering strength of dusty star-forming galaxies between z~0 and z~2.5. In order to remove any bias in the selection process, the adopted sample only includes galaxies observed at the same rest-frame wavelength, lambda~60 um, which have comparable luminosities and therefore star-formation rates (SFR>~100 Msun/yr). Our analysis shows that the same amount of (intense) star forming activity takes place in extremely different environments at the different cosmological epochs. For z<~1 the hosts of such star forming systems are small, Mmin~10^{11} Msun, isolated galaxies. High (z~2) redshift star formation instead seems to uniquely take place in extremely massive/cluster-like halos, Mmin~10^{13.5} Msun, which are associated with the highest peaks of the density fluctuation field at those epochs. (abridged)
ABRIDGED-This paper presents the first direct estimate of the 3D clustering properties of far-infrared sources up to z~3. This has been possible thanks to the Pacs Evolutionary Probe (PEP) survey of the GOODS South field performed with the PACS instr ument onboard the Herschel Satellite. An analysis of the two-point correlation function over the whole redshift range spanned by the data reports for the correlation length, r_0~6.3 Mpc and r_0~6.7 Mpc, respectively at 100um and 160um, corresponding to dark matter halo masses M>~10^{12.4} M_sun. Objects at z~2 instead seem to be more strongly clustered, with r_0~19 Mpc and r_0~17 Mpc in the two considered PACS channels. This dramatic increase of the correlation length between z~1 and z~2 is connected with the presence of a wide, M>~10^{14} M_sun, filamentary structure which includes more than 50% of the sources detected at z~2. An investigation of the properties of such sources indicates the possibility for boosted star-forming activity in those which reside within the overdense environment with respect of more isolated galaxies found in the same redshift range. Lastly, we also present our results on the evolution of the relationship between luminous and dark matter in star-forming galaxies between z~1 and z~2. We find that the increase of (average) stellar mass in galaxies <M*> between z~1 and z~2 is about a factor 10 lower than that of the dark matter haloes hosting such objects (<M*>[z~1]/<M*>[z~2] ~ 0.4 vs M_{halo}[z~1]/M_{halo}[z~2] ~ 0.04). Our findings agree with the evolutionary picture of downsizing whereby massive galaxies at z~2 were more actively forming stars than their z~1 counterparts, while at the same time contained a lower fraction of their mass in the form of luminous matter.
This paper investigates the clustering properties of a complete sample of 1041 24um-selected sources brighter than F[24um]=400 uJy in the overlapping region between the SWIRE and UKIDSS UDS surveys. We have concentrated on the two (photometric) inter val ranges z=[0.6-1.2] (low-z sample) and z>1.6 (high-z sample) as it is in these regions were we expect the mid-IR population to be dominated by intense dust-enshrouded activity such as star formation and black hole accretion. Investigations of the angular correlation function produce a correlation length are r0~15.9 Mpc for the high-z sample and r0~8.5 Mpc for the low-z one. Comparisons with physical models reveal that the high-z sources are exclusively associated with very massive (M>~10^{13} M_sun)haloes, comparable to those which locally host groups-to-clusters of galaxies, and are very common within such (rare) structures. Conversely, lower-z galaxies are found to reside in smaller halos (M_min~10^{12} M_sun) and to be very rare in such systems. While recent studies have determined a strong evolution of the 24um luminosity function between z~2 and z~0, they cannot provide information on the physical nature of such an evolution. Our clustering results instead indicate that this is due to the presence of different populations of objects inhabiting different structures, as active systems at z<~1.5 are found to be exclusively associated with low-mass galaxies, while very massive sources appear to have concluded their active phase before this epoch. Finally, we note that the small-scale clustering data seem to require steep profiles for the distribution of galaxies within their halos. This is suggestive of close encounters and/or mergers which could strongly favour both AGN and star-formation activity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا