ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurements performed on superconductive networks shaped in the form of planar graphs display anomalously large currents when specific branches are biased. The temperature dependencies of these currents evidence that their origin is due to Cooper pa ir hopping through the Josephson junctions connecting the superconductive islands of the array. The experimental data are discussed in terms of a theoretical model which predicts, for the system under consideration, an inhomogeneous Cooper pair distribution on the superconductive islands of the network.
We investigate the effects of magnetic and electric fields on electron wavefunction interactions in single walled carbon nanotube bundles. The magnetoresistance measurements performed at 4.2K and the dependence of the data upon the electric field, ob tained by varying the bias current through the samples, reveal good agreement with weak localization theory. Recording current-voltage characteristics at different temperatures we find an ohmic non-ohmic transition which disappears above 85K. Conductance vs temperature measurements are also well explained in the framework of weak localization theory by the predicted temperature dependence of the electric field-conditioned characteristic length. This length results equal to the average bundles diameter just at T{backcong}85K, indicating that the observed conductance transition is due to a 2D-3D crossover.
103 - M. Salvato , M. Cirillo , M. Lucci 2009
We report on experiments conducted on single walled carbon nanotube bundles aligned in chains and connected through a natural contact barrier. The dependence upon the temperature of the transport properties is investigated for samples having differen t characteristics. Starting from two bundles separated by one barrier deposited over four contact probes, we extend the study of the transport properties to samples formed by chains of several bundles. The systematic analysis of the properties of these aggregates shows the existence of two conduction regimes in the barrier. We show that an electrical circuit taking into account serial and parallel combinations of voltages generated at the junctions between bundles models the samples consistently.
Series arrays of Josephson junctions show evidence of a mode in which all the junctions oscillate in synchronism on voltage resonances appearing, in zero external magnetic field, at multiples of the fundamental Fiske step spacing. The measurements sh ow that the current amplitude of the resonances increases linearly as their voltages are summed. Investigation of the nature of the coherent mode by magnetic field responses of arrays and isolated juctions reveals that the oscillations take place in a parameter plane region where dc magnetic fields only activate boundary current and flux-quanta dynamics can take place.
We investigate experimentally the transport properties of single-walled carbon nanotube bundles as a function of temperature and applied current over broad intervals of these variables. The analysis is performed on arrays of nanotube bundles whose ax es are aligned along the direction of the externally supplied bias current. The data are found consistent with a charge transport model governed by the tunnelling between metallic regions occurring through potential barriers generated by nanotubes contact areas or bundles surfaces. Based on this model and on experimental data we describe quantitatively the dependencies of the amplitude of these barriers upon bias current and temperature.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا