ﻻ يوجد ملخص باللغة العربية
Measurements performed on superconductive networks shaped in the form of planar graphs display anomalously large currents when specific branches are biased. The temperature dependencies of these currents evidence that their origin is due to Cooper pair hopping through the Josephson junctions connecting the superconductive islands of the array. The experimental data are discussed in terms of a theoretical model which predicts, for the system under consideration, an inhomogeneous Cooper pair distribution on the superconductive islands of the network.
We show that some of the Josephson couplings of junctions arranged to form an inhomogeneous network undergo a non-perturbative renormalization provided that the networks connectivity is pertinently chosen. As a result, the zero-voltage Josephson crit
Interfacial spin-orbit coupling in Josephson junctions offers an intriguing way to combine anomalous Hall and Josephson physics in a single device. We study theoretically how the superposition of both effects impacts superconductor/ferromagnetic insu
We develop an analytic theory for the recently demonstrated Josephson Junction laser (Science 355, p. 939, 2017). By working in the time-domain representation (rather than the frequency-domain) a single non-linear equation is obtained for the dynamic
In this work we study the magnetic remanence exhibited by Josephson junction arrays in response to an excitation with an AC magnetic field. The effect, predicted by numerical simulations to occur in a range of temperatures, is clearly seen in our tri
We investigate hysteresis in the transport properties of Superconductor - Normal metal - Superconductor (S-N-S) junctions at low temperatures by measuring directly the electron temperature in the normal metal. Our results demonstrate unambiguously th