ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterization of Anomalous Pair Currents in Josephson Junction Networks

103   0   0.0 ( 0 )
 نشر من قبل Matteo Cirillo Prof.
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Measurements performed on superconductive networks shaped in the form of planar graphs display anomalously large currents when specific branches are biased. The temperature dependencies of these currents evidence that their origin is due to Cooper pair hopping through the Josephson junctions connecting the superconductive islands of the array. The experimental data are discussed in terms of a theoretical model which predicts, for the system under consideration, an inhomogeneous Cooper pair distribution on the superconductive islands of the network.

قيم البحث

اقرأ أيضاً

We show that some of the Josephson couplings of junctions arranged to form an inhomogeneous network undergo a non-perturbative renormalization provided that the networks connectivity is pertinently chosen. As a result, the zero-voltage Josephson crit ical currents $I_c$ turn out to be enhanced along directions selected by the networks topology. This renormalization effect is possible only on graphs whose adjacency matrix admits an hidden spectrum (i.e. a set of localized states disappearing in the thermodynamic limit). We provide a theoretical and experimental study of this effect by comparing the superconducting behavior of a comb-shaped Josephson junction network and a linear chain made with the same junctions: we show that the Josephson critical currents of the junctions located on the combs backbone are bigger than the ones of the junctions located on the chain. Our theoretical analysis, based on a discrete version of the Bogoliubov-de Gennes equation, leads to results which are in good quantitative agreement with experimental results.
Interfacial spin-orbit coupling in Josephson junctions offers an intriguing way to combine anomalous Hall and Josephson physics in a single device. We study theoretically how the superposition of both effects impacts superconductor/ferromagnetic insu lator/superconductor junctions transport properties. Transverse momentum-dependent skew tunneling of Cooper pairs through the spin-active ferromagnetic insulator interface creates sizable transverse Hall supercurrents, to which we refer as anomalous Josephson Hall effect currents. We generalize the Furusaki-Tsukada formula, which got initially established to quantify usual (tunneling) Josephson current flows, to evaluate the transverse current components and demonstrate that their amplitudes are widely adjustable by means of the spin-orbit coupling strengths or the superconducting phase difference across the junction. As a clear spectroscopic fingerprint of Josephson junctions, well-localized subgap bound states form around the interface. By analyzing the spectral properties of these states, we unravel an unambiguous correlation between spin-orbit coupling-induced asymmetries in their energies and the transverse current response, founding the currents microscopic origin. Moreover, skew tunneling simultaneously acts like a transverse spin filter for spin-triplet Cooper pairs and complements the discussed charge current phenomena by their spin current counterparts. The junctions universal spin-charge current cross ratios provide valuable possibilities to experimentally detect and characterize interfacial spin-orbit coupling.
We develop an analytic theory for the recently demonstrated Josephson Junction laser (Science 355, p. 939, 2017). By working in the time-domain representation (rather than the frequency-domain) a single non-linear equation is obtained for the dynamic s of the device, which is fully solvable in some regimes of operation. The nonlinear drive is seen to lead to mode-locked output, with a period set by the round-trip time of the resonant cavity.
In this work we study the magnetic remanence exhibited by Josephson junction arrays in response to an excitation with an AC magnetic field. The effect, predicted by numerical simulations to occur in a range of temperatures, is clearly seen in our tri dimensional disordered arrays. We also discuss the influence of the critical current distribution on the temperature interval within which the array develops a magnetic remanence. This effect can be used to determine the critical current distribution of an array.
We investigate hysteresis in the transport properties of Superconductor - Normal metal - Superconductor (S-N-S) junctions at low temperatures by measuring directly the electron temperature in the normal metal. Our results demonstrate unambiguously th at the hysteresis results from an increase of the normal metal electron temperature once the junction switches to the resistive state. In our geometry, the electron temperature increase is governed by the thermal resistance of the superconducting electrodes of the junction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا