ترغب بنشر مسار تعليمي؟ اضغط هنا

88 - T. Shahbaz 2015
We present time-resolved optical photometry of the binary millisecond `redback pulsar PSR J1023+0038 (=AY Sex) during its low-mass X-ray binary phase. The light curves taken between 2014 January and April show an underlying sinusoidal modulation due to the irradiated secondary star and accretion disc. We also observe superimposed rapid flaring on time-scales as short as ~20 s with amplitudes of ~0.1-0.5 mag and additional large flare events on time-scales of ~5-60 min with amplitudes ~0.5-1.0 mag. The power density spectrum of the optical flare light curves is dominated by a red-noise component, typical of aperiodic activity in X-ray binaries. Simultaneous X-ray and UV observations by the Swift satellite reveal strong correlations that are consistent with X-ray reprocessing of the UV light, most likely in the outer regions of the accretion disc. On some nights we also observe sharp-edged, rectangular, flat-bottomed dips randomly distributed in orbital phase, with a median duration of ~250 s and a median ingress/egress time of ~20 s. These rectangular dips are similar to the mode-switching behaviour between disc `active and `passive luminosity states, observed in the X-ray light curves of other redback millisecond pulsars. This is the first time that the optical analogue of the X-ray mode-switching has been observed. The properties of the passive and active state light curves can be explained in terms of clumpy accretion from a trapped inner accretion disc near the corotation radius, resulting in rectangular, flat-bottomed optical and X-ray light curves.
84 - M. Linares 2012
Thermonuclear bursts from slowly accreting neutron stars (NSs) have proven difficult to detect, yet they are potential probes of the thermal properties of the neutron star interior. During the first year of a systematic all-sky search for X-ray burst s using the Gamma-ray Burst Monitor (GBM) aboard the Fermi Gamma-ray Space Telescope we have detected 15 thermonuclear bursts from the NS low-mass X-ray binary 4U 0614+09, when it was accreting at nearly 1% of the Eddington limit. We measured an average burst recurrence time of 12+/-3 d (68% confidence interval) between March 2010 and March 2011, classified all bursts as normal duration bursts and placed a lower limit on the recurrence time of long/intermediate bursts of 62 d (95% confidence level). We discuss how observations of thermonuclear bursts in the hard X-ray band compare to pointed soft X-ray observations, and quantify such bandpass effects on measurements of burst radiated energy and duration. We put our results for 4U 0614+09 in the context of other bursters and briefly discuss the constraints on ignition models. Interestingly, we find that the burst energies in 4U 0614+09 are on average between those of normal duration bursts and those measured in long/intermediate bursts. Such a continuous distribution in burst energy provides a new observational link between normal and long/intermediate bursts. We suggest that the apparent bimodal distribution that defined normal and long/intermediate duration bursts during the last decade could be due to an observational bias towards detecting only the longest and most energetic bursts from slowly accreting NSs.
We report on the first 180 days of RXTE observations of the outburst of the black hole candidate IGR J17091-3624. This source exhibits a broad variety of complex light curve patterns including periods of strong flares alternating with quiet intervals . Similar patterns in the X-ray light curves have been seen in the (up to now) unique black hole system GRS 1915+105. In the context of the variability classes defined by Belloni et al. (2000) for GRS 1915+105, we find that IGR J17091-3624 shows the u, rho, alpha, lambda, beta and mu classes as well as quiet periods which resemble the chi class, all occurring at 2-60 keV count rate levels which can be 10-50 times lower than observed in GRS 1915+105. The so-called rho class heartbeats occur as fast as every few seconds and as slow as ~100 seconds, tracing a loop in the hardness-intensity diagram which resembles that previously seen in GRS 1915+105. However, while GRS 1915+105 traverses this loop clockwise, IGR J17091-3624 does so in the opposite sense. We briefly discuss our findings in the context of the models proposed for GRS 1915+105 and find that either all models requiring near Eddington luminosities for GRS 1915+105-like variability fail, or IGR J17091-3624 lies at a distance well in excess of 20 kpc or, it harbors one of the least massive black holes known (< 3 M_sun).
70 - M. Linares 2011
We present a comprehensive study of the thermonuclear bursts and millihertz quasi-periodic oscillations (mHz QPOs) from the neutron star (NS) transient and 11 Hz X-ray pulsar IGR J17480-2446, located in the globular cluster Terzan 5. The increase in burst rate that we found during its 2010 outburst, when persistent luminosity rose from 0.1 to 0.5 times the Eddington limit, is in qualitative agreement with thermonuclear burning theory yet opposite to all previous observations of thermonuclear bursts. Thermonuclear bursts gradually evolved into a mHz QPO when the accretion rate increased, and vice versa. The mHz QPOs from IGR J17480-2446 resemble those previously observed in other accreting NSs, yet they feature lower frequencies (by a factor ~3) and occur when the persistent luminosity is higher (by a factor 4-25). We find four distinct bursting regimes and a steep (close to inverse cubic) decrease of the burst recurrence time with increasing persistent luminosity. We compare these findings to nuclear burning models and find evidence for a transition between the pure helium and mixed hydrogen/helium ignition regimes when the persistent luminosity was about 0.3 times the Eddington limit. We also point out important discrepancies between the observed bursts and theory, which predicts brighter and less frequent bursts, and suggest that an additional source of heat in the NS envelope is required to reconcile the observed and expected burst properties. We discuss the impact of NS magnetic field and spin on the expected nuclear burning regimes, in the context of this particular pulsar.
87 - M. Linares 2011
The neutron star transient and 11 Hz X-ray pulsar IGR J17480-2446, recently discovered in the globular cluster Terzan 5, showed unprecedented bursting activity during its 2010 October-November outburst. We analyzed all X-ray bursts detected with the Rossi X-ray Timing Explorer and find strong evidence that they all have a thermonuclear origin, despite the fact that many do not show the canonical spectral softening along the decay imprinted on type I X-ray bursts by the cooling of the neutron star photosphere. We show that the persistent-to-burst power ratio is fully consistent with the accretion-to-thermonuclear efficiency ratio along the whole outburst, as is typical for type I X-ray bursts. The burst energy, peak luminosity and daily-averaged spectral profiles all evolve smoothly throughout the outburst, in parallel with the persistent (non-burst) luminosity. We also find that the peak burst to persistent luminosity ratio determines whether or not cooling is present in the bursts from IGR J17480-2446, and argue that the apparent lack of cooling is due to the non-cooling bursts having both a lower peak temperature and a higher non-burst (persistent) emission. We conclude that the detection of cooling along the decay is a sufficient, but not a necessary condition to identify an X-ray burst as thermonuclear. Finally, we compare these findings with X-ray bursts from other rapidly accreting neutron stars.
176 - M. Linares 2010
We report the detection of 15 X-ray bursts with RXTE and Swift observations of the peculiar X-ray binary Circinus X-1 during its May 2010 X-ray re-brightening. These are the first X-ray bursts observed from the source after the initial discovery by T ennant and collaborators, twenty-five years ago. By studying their spectral evolution, we firmly identify nine of the bursts as type I (thermonuclear) X-ray bursts. We obtain an arcsecond location of the bursts that confirms once and for all the identification of Cir X-1 as a type I X-ray burst source, and therefore as a low magnetic field accreting neutron star. The first five bursts observed by RXTE are weak and show approximately symmetric light curves, without detectable signs of cooling along the burst decay. We discuss their possible nature. Finally, we explore a scenario to explain why Cir X-1 shows thermonuclear bursts now but not in the past, when it was extensively observed and accreting at a similar rate.
We report the discovery of burst oscillations at the spin frequency in ten thermonuclear bursts from the accreting millisecond X-ray pulsar (AMXP) IGR J17511-3057. The burst oscillation properties are, like those from the persistent AMXPs SAX J1808.4 -3658 and XTE J1814-338, anomalous compared to burst oscillations from intermittent pulsars or non-pulsing LMXBs. Like SAX J1808.4-3658 they show frequency drifts in the rising phase rather than the tail. There is also evidence for harmonic content. Where IGR J17511-3057 is unusual compared to the other two persistent pulsars is that oscillations are not detected throughout all bursts. As accretion rate drops the bursts get brighter and their rise/decay time scales become shorter, while the oscillation amplitude falls below the detection threshold: first in the burst peak and then also in the rise. None of the bursts from IGR J17511-3057 show evidence for photospheric radius expansion (which might be expected to suppress oscillation amplitude) which allow us to set an upper limit to the distance of 6.9 kpc. We discuss the implications of our results for models of the burst oscillation mechanism.
We present a detailed study of the X-ray energy and power spectral properties of the neutron star transient IGR J17191-2821. We discovered four instances of pairs of simultaneous kilohertz quasi-periodic oscillations (kHz QPOs). The frequency differe nce between these kHz QPOs is between 315 Hz and 362 Hz. We also report on the detection of five thermonuclear type-I X-ray bursts and the discovery of burst oscillations at ~294 Hz during three of them. Finally, we report on a faint and short outburst precursor, which occurred about two months before the main outburst. Our results on the broadband spectral and variability properties allow us to firmly establish the atoll source nature of IGR J17191-2821.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا