ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper we investigate pre-derivations of filiform Leibniz algebras. Recall that the set of filiform Leibniz algebras of fixed dimension can be decomposed into three non-intersected families. We describe the pre-derivation of filiform Leibniz a lgebras for the first and second families. We found sufficient conditions under which filiform Leibniz algebras are strongly nilpotent. Moreover, for the first and second families, we give the description of characteristically nilpotent algebras which are non-strongly nilpotent.
In this paper solvable Leibniz algebras whose nilradical is quasi-filiform Lie algebra of maximum length, are classified. The rigidity of such Leibniz algebras with two-dimensional complemented space to nilradical is proved.
In this paper we construct a minimal faithful representation of the $(2m+2)$-dimensional complex general Diamond Lie algebra, $mathfrak{D}_m(mathbb{C})$, which is isomorphic to a subalgebra of the special linear Lie algebra $mathfrak{sl}(m+2,mathbb{C })$. We also construct a faithful representation of the general Diamond Lie algebra $mathfrak{D}_m$ which is isomorphic to a subalgebra of the special symplectic Lie algebra $mathfrak{sp}(2m+2,mathbb{R})$. Furthermore, we describe Leibniz algebras with corresponding $(2m+2)$-dimensional general Diamond Lie algebra $mathfrak{D}_m$ and ideal generated by the squares of elements giving rise to a faithful representation of $mathfrak{D}_m$.
In this paper solvable Leibniz algebras with naturally graded non-Lie $p$-filiform $(n-pgeq4)$ nilradical and with one-dimensional complemented space of nilradical are described. Moreover, solvable Leibniz algebras with abelian nilradical and extrema l (minimal, maximal) dimensions of complemented space nilradical are studied. The rigidity of solvable Leibniz algebras with abelian nilradical and maximal dimension of its complemented space is proved.
The description of complex solvable Leibniz algebras whose nilradical is a naturally graded filiform algebra is already known. Unfortunately, a mistake was made in that description. Namely, in the case where the dimension of the solvable Leibniz alge bra with nilradical $F_n^1$ is equal to $n+2$, it was asserted that there is no such algebra. However, it was possible for us to find a unique $(n+2)$-dimensional solvable Leibniz algebra with nilradical $F_n^1$. In addition, we establish the triviality of the second group of cohomology for this algebra with coefficients in itself, which implies its rigidity.
In the present paper we indicate some Leibniz algebras whose closures of orbits under the natural action of $GL_n$ form an irreducible component of the variety of complex $n$-dimensional Leibniz algebras. Moreover, for these algebras we calculate the bases of their second groups of cohomologies.
In this paper we prove some general results on Leibniz 2-cocycles for simple Leibniz algebras. Applying these results we establish the triviality of the second Leibniz cohomology for a simple Leibniz algebra with coefficients in itself, whose assoc iated Lie algebra is isomorphic to $mathfrak{sl}_2$.
The present paper is devoted to the description of rigid solvable Leibniz algebras. In particular, we prove that solvable Leibniz algebras under some conditions on the nilradical are rigid and we describe four-dimensional solvable Leibniz algebras wi th three-dimensional rigid nilradical. We show that the Grunewald-OHallorans conjecture any $n$-dimensional nilpotent Lie algebra is a degeneration of some algebra of the same dimension holds for Lie algebras of dimensions less than six and for Leibniz algebras of dimensions less than four. The algebra of level one, which is omitted in the 1991 Gorbatsevichs paper, is indicated.
In this paper we investigate the derivations of filiform Leibniz algebras. Recall that the set of filiform Leibniz algebras of fixed dimension is decomposed into three non-intersected families. We found sufficient conditions under which filiform Leib niz algebras of the first family are characteristically nilpotent. Moreover, for the first family we classify non-characteristically nilpotent algebras by means of Catalan numbers. In addition, for the rest two families of filiform Leibniz algebras we describe non-characteristically nilpotent algebras, i.e., those filiform Leibniz algebras which lie in the complementary set to those characteristically nilpotent.
In this paper we show that the method for describing solvable Lie algebras with given nilradical by means of non-nilpotent outer derivations of the nilradical is also applicable to the case of Leibniz algebras. Using this method we extend the classif ication of solvable Lie algebras with naturally graded filiform Lie algebra to the case of Leibniz algebras. Namely, the classification of solvable Leibniz algebras whose nilradical is a naturally graded filiform Leibniz algebra is obtained.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا