ترغب بنشر مسار تعليمي؟ اضغط هنا

Solvable Leibniz algebra with non-Lie and non-split naturally graded filiform nilradical and its rigidity

212   0   0.0 ( 0 )
 نشر من قبل Bakhrom Omirov Abdazovich
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The description of complex solvable Leibniz algebras whose nilradical is a naturally graded filiform algebra is already known. Unfortunately, a mistake was made in that description. Namely, in the case where the dimension of the solvable Leibniz algebra with nilradical $F_n^1$ is equal to $n+2$, it was asserted that there is no such algebra. However, it was possible for us to find a unique $(n+2)$-dimensional solvable Leibniz algebra with nilradical $F_n^1$. In addition, we establish the triviality of the second group of cohomology for this algebra with coefficients in itself, which implies its rigidity.



قيم البحث

اقرأ أيضاً

In this paper solvable Leibniz algebras with naturally graded non-Lie $p$-filiform $(n-pgeq4)$ nilradical and with one-dimensional complemented space of nilradical are described. Moreover, solvable Leibniz algebras with abelian nilradical and extrema l (minimal, maximal) dimensions of complemented space nilradical are studied. The rigidity of solvable Leibniz algebras with abelian nilradical and maximal dimension of its complemented space is proved.
In this paper we show that the method for describing solvable Lie algebras with given nilradical by means of non-nilpotent outer derivations of the nilradical is also applicable to the case of Leibniz algebras. Using this method we extend the classif ication of solvable Lie algebras with naturally graded filiform Lie algebra to the case of Leibniz algebras. Namely, the classification of solvable Leibniz algebras whose nilradical is a naturally graded filiform Leibniz algebra is obtained.
In this paper we describe central extensions of some nilpotent Leibniz algebras. Namely, central extensions of the Leibniz algebra with maximal index of nilpotency are classified. Moreover, non-split central extensions of naturally graded filiform no n-Lie Leibniz algebras are described up to isomorphism. It is shown that $k$-dimensional central extensions ($kgeq 5$) of these algebras are split.
The present article is a part of the study of solvable Leibniz algebras with a given nilradical. In this paper solvable Leibniz algebras, whose nilradicals is naturally graded quasi-filiform algebra and the complemented space to the nilradical has maximal dimension, are described up to isomorphism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا