ترغب بنشر مسار تعليمي؟ اضغط هنا

The results of local measurements on some composite quantum systems cannot be reproduced classically. This impossibility, known as quantum nonlocality, represents a milestone in the foundations of quantum theory. Quantum nonlocality is also a valuabl e resource for information processing tasks, e.g. quantum communication, quantum key distribution, quantum state estimation, or randomness extraction. Still, deciding if a quantum state is nonlocal remains a challenging problem. Here we introduce a novel approach to this question: we study the nonlocal properties of quantum states when distributed and measured in networks. Using our framework, we show how any one-way entanglement distillable state leads to nonlocal correlations. Then, we prove that nonlocality is a non-additive resource, which can be activated. There exist states, local at the single-copy level, that become nonlocal when taking several copies of it. Our results imply that the nonlocality of quantum states strongly depends on the measurement context.
We present a multipartite nonlocal game in which each player must guess the input received by his neighbour. We show that quantum correlations do not perform better than classical ones at this game, for any prior distribution of the inputs. There exi st, however, input distributions for which general no-signalling correlations can outperform classical and quantum correlations. Some of the Bell inequalities associated to our construction correspond to facets of the local polytope. Thus our multipartite game identifies parts of the boundary between quantum and post-quantum correlations of maximal dimension. These results suggest that quantum correlations might obey a generalization of the usual no-signalling conditions in a multipartite setting.
Structural approximations to positive, but not completely positive maps are approximate physical realizations of these non-physical maps. They find applications in the design of direct entanglement detection methods. We show that many of these approx imations, in the relevant case of optimal positive maps, define an entanglement breaking channel and, consequently, can be implemented via a measurement and state-preparation protocol. We also show how our findings can be useful for the design of better and simpler direct entanglement detection methods.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا