ترغب بنشر مسار تعليمي؟ اضغط هنا

Context: The north-west photo-dissociation region (PDR) in the reflection nebula NGC 7023 displays a complex structure. Filament-like condensations at the edge of the cloud can be traced via the emission of the main cooling lines, offering a great op portunity to study the link between the morphology and energetics of these regions. Aims: We study the spatial variation of the far-infrared fine-structure lines of [C II] (158 um) and [O I] (63 and 145 um). These lines trace the local gas conditions across the PDR. Methods: We used observations from the Herschel/PACS instrument to map the spatial distribution of these fine-structure lines. The observed region covers a square area of about 110 x 110 with an angular resolution that varies from 4 to 11. We compared this emission with ground-based and Spitzer observations of H2 lines, Herschel/SPIRE observations of CO lines, and Spitzer/IRAC 3.6 um images that trace the emission of polycyclic aromatic hydrocarbons. Results: The [C II] (158 um) and [O I] (63 and 145 um) lines arise from the warm cloud surface where the PDR is located and the gas is warm, cooling the region. We find that although the relative contribution to the cooling budget over the observed region is dominated by [O I]63 um (>30%), H2 contributes significantly in the PDR (35%), as does [C II]158 um outside the PDR (30%). Other species contribute little to the cooling ([O I]145 um 9%, and CO 4%). The [O I] maps resolve these condensations into two structures and show that the peak of [O I] is slightly displaced from the molecular H2 emission. The size of these structures is about 8 (0.015 pc) and in surface cover about 9% of the PDR emission. Finally, we did not detect emission from [N II]122 um, suggesting that the cavity is mostly filled with non-ionised gas.
116 - M. Kohler , E. Habart , H. Arab 2014
The determination of the physical conditions in molecular clouds is a key step towards our understanding of their formation and evolution of associated star formation. We investigate the density, temperature, and column density of both dust and gas i n the photodissociation regions (PDRs) located at the interface between the atomic and cold molecular gas of the NGC 7023 reflection nebula. We study how young stars affect the gas and dust in their environment. Our approach combining both dust and gas delivers strong constraints on the physical conditions of the PDRs. We find dense and warm molecular gas of high column density in the PDRs.
135 - M. Kohler , H. Daerr , P. Sahling 2014
The determination of isotope ratios of noble gas atoms has many applications e.g. in physics, nuclear arms control, and earth sciences. For several applications, the concentration of specific noble gas isotopes (e.g. Kr and Ar) is so low that single atom detection is highly desirable for a precise determination of the concentration. As an important step in this direction, we demonstrate operation of a krypton Atom Trap Trace Analysis (ATTA) setup based on a magneto-optical trap (MOT) for metastable Kr atoms excited by all-optical means. Compared to other state-of-the-art techniques for preparing metastable noble gas atoms, all-optical production is capable of overcoming limitations regarding minimal probe volume and avoiding cross-contamination of the samples. In addition, it allows for a compact and reliable setup. We identify optimal parameters of our experimental setup by employing the most abundant isotope Kr-84, and demonstrate single atom detection within a 3D MOT.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا