ﻻ يوجد ملخص باللغة العربية
Context: The north-west photo-dissociation region (PDR) in the reflection nebula NGC 7023 displays a complex structure. Filament-like condensations at the edge of the cloud can be traced via the emission of the main cooling lines, offering a great opportunity to study the link between the morphology and energetics of these regions. Aims: We study the spatial variation of the far-infrared fine-structure lines of [C II] (158 um) and [O I] (63 and 145 um). These lines trace the local gas conditions across the PDR. Methods: We used observations from the Herschel/PACS instrument to map the spatial distribution of these fine-structure lines. The observed region covers a square area of about 110 x 110 with an angular resolution that varies from 4 to 11. We compared this emission with ground-based and Spitzer observations of H2 lines, Herschel/SPIRE observations of CO lines, and Spitzer/IRAC 3.6 um images that trace the emission of polycyclic aromatic hydrocarbons. Results: The [C II] (158 um) and [O I] (63 and 145 um) lines arise from the warm cloud surface where the PDR is located and the gas is warm, cooling the region. We find that although the relative contribution to the cooling budget over the observed region is dominated by [O I]63 um (>30%), H2 contributes significantly in the PDR (35%), as does [C II]158 um outside the PDR (30%). Other species contribute little to the cooling ([O I]145 um 9%, and CO 4%). The [O I] maps resolve these condensations into two structures and show that the peak of [O I] is slightly displaced from the molecular H2 emission. The size of these structures is about 8 (0.015 pc) and in surface cover about 9% of the PDR emission. Finally, we did not detect emission from [N II]122 um, suggesting that the cavity is mostly filled with non-ionised gas.
We present spatially resolved Herschel/PACS observations of the Orion Bar. We have characterise the emission of the far-infrared fine-structure lines of [CII] (158um), [OI] (63 and 145um), and [NII] (122um) that trace the gas local conditions. The ob
We present 5-20 micron spectral maps of the reflection nebula NGC2023 obtained with the Infrared Spectrograph SL and SH modes on board the Spitzer Space Telescope which reveal emission from polycyclic aromatic hydrocarbons (PAHs), C60, and H2 superpo
We have mapped the NGC 2023 reflection nebula in [CII] and CO(11--10) with the heterodyne receiver GREAT on SOFIA and obtained slightly smaller maps in 13CO(3--2), CO(3--2), CO(4--3), CO(6--5), and CO(7--6) with APEX in Chile. We use these data to pr
We present 15-20 um spectral maps towards the reflection nebula NGC2023 obtained with the Infrared Spectrograph in short-wavelength, high-resolution mode on board the Spitzer Space Telescope. These spectra reveal emission from PAHs, C60, and H2 super
The ratio of the [CII] 158$,mu$m emission line over the total infrared emission (TIR) is often used as a proxy for the photoelectric (PE) heating efficiency ($epsilon_{rm PE}$) of the far-ultraviolet (FUV) photons absorbed by dust in the interstellar