ترغب بنشر مسار تعليمي؟ اضغط هنا

Despite considerable progress in genome- and proteome-based high-throughput screening methods and in rational drug design, the increase in approved drugs in the past decade did not match the increase of drug development costs. Network description and analysis not only give a systems-level understanding of drug action and disease complexity, but can also help to improve the efficiency of drug design. We give a comprehensive assessment of the analytical tools of network topology and dynamics. The state-of-the-art use of chemical similarity, protein structure, protein-protein interaction, signaling, genetic interaction and metabolic networks in the discovery of drug targets is summarized. We propose that network targeting follows two basic strategies. The central hit strategy selectively targets central nodes/edges of the flexible networks of infectious agents or cancer cells to kill them. The network influence strategy works against other diseases, where an efficient reconfiguration of rigid networks needs to be achieved by targeting the neighbors of central nodes or edges. It is shown how network techniques can help in the identification of single-target, edgetic, multi-target and allo-network drug target candidates. We review the recent boom in network methods helping hit identification, lead selection optimizing drug efficacy, as well as minimizing side-effects and drug toxicity. Successful network-based drug development strategies are shown through the examples of infections, cancer, metabolic diseases, neurodegenerative diseases and aging. Summarizing more than 1200 references we suggest an optimized protocol of network-aided drug development, and provide a list of systems-level hallmarks of drug quality. Finally, we highlight network-related drug development trends helping to achieve these hallmarks by a cohesive, global approach.
The network concept is increasingly used for the description of complex systems. Here we summarize key aspects of the evolvability and robustness of the hierarchical network-set of macromolecules, cells, organisms, and ecosystems. Listing the costs a nd benefits of cooperation as a necessary behaviour to build this network hierarchy, we outline the major hypothesis of the paper: the emergence of hierarchical complexity needs cooperation leading to the ageing (i.e. gradual deterioration) of the constituent networks. A stable environment develops cooperation leading to over-optimization, and forming an always-old network, which accumulates damage, and dies in an apoptosis-like process. A rapidly changing environment develops competition forming a forever-young network, which may suffer an occasional over-perturbation exhausting system-resources, and causing death in a necrosis-like process. Giving a number of examples we demonstrate how cooperation evokes the gradual accumulation of damage typical to ageing. Finally, we show how various forms of cooperation and consequent ageing emerge as key elements in all major steps of evolution from the formation of protocells to the establishment of the globalized, modern human society.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا