ترغب بنشر مسار تعليمي؟ اضغط هنا

Ageing as a price of cooperation and complexity: Self-organization of complex systems causes the ageing of constituent networks

91   0   0.0 ( 0 )
 نشر من قبل Peter Csermely
 تاريخ النشر 2010
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The network concept is increasingly used for the description of complex systems. Here we summarize key aspects of the evolvability and robustness of the hierarchical network-set of macromolecules, cells, organisms, and ecosystems. Listing the costs and benefits of cooperation as a necessary behaviour to build this network hierarchy, we outline the major hypothesis of the paper: the emergence of hierarchical complexity needs cooperation leading to the ageing (i.e. gradual deterioration) of the constituent networks. A stable environment develops cooperation leading to over-optimization, and forming an always-old network, which accumulates damage, and dies in an apoptosis-like process. A rapidly changing environment develops competition forming a forever-young network, which may suffer an occasional over-perturbation exhausting system-resources, and causing death in a necrosis-like process. Giving a number of examples we demonstrate how cooperation evokes the gradual accumulation of damage typical to ageing. Finally, we show how various forms of cooperation and consequent ageing emerge as key elements in all major steps of evolution from the formation of protocells to the establishment of the globalized, modern human society.

قيم البحث

اقرأ أيضاً

Many real-world complex networks arise as a result of a competition between growth and rewiring processes. Usually the initial part of the evolution is dominated by growth while the later one rather by rewiring. The initial growth allows the network to reach a certain size while rewiring to optimise its function and topology. As a model example we consider tree networks which first grow in a stochastic process of node attachment and then age in a stochastic process of local topology changes. The ageing is implemented as a Markov process that preserves the node-degree distribution. We quantify differences between the initial and aged network topologies and study the dynamics of the evolution. We implement t
There is a widening recognition that cancer cells are products of complex developmental processes. Carcinogenesis and metastasis formation are increasingly described as systems-level, network phenomena. Here we propose that malignant transformation i s a two-phase process, where an initial increase of system plasticity is followed by a decrease of plasticity at late stages of carcinogenesis as a model of cellular learning. We describe the hallmarks of increased system plasticity of early, tumor initiating cells, such as increased noise, entropy, conformational and phenotypic plasticity, physical deformability, cell heterogeneity and network rearrangements. Finally, we argue that the large structural changes of molecular networks during cancer development necessitate a rather different targeting strategy in early and late phase of carcinogenesis. Plastic networks of early phase cancer development need a central hit, while rigid networks of late stage primary tumors or established metastases should be attacked by the network influence strategy, such as by edgetic, multi-target, or allo-network drugs. Cancer stem cells need special diagnosis and targeting, since their dormant and rapidly proliferating forms may have more rigid, or more plastic networks, respectively. The extremely high ability to change their rigidity/plasticity may be a key differentiating hallmark of cancer stem cells. The application of early stage-optimized anti-cancer drugs to late-stage patients may be a reason of many failures in anti-cancer therapies. Our hypotheses presented here underlie the need for patient-specific multi-target therapies applying the correct ratio of central hits and network influences -- in an optimized sequence.
Although accumulation of molecular damage is suggested to be an important molecular mechanism of aging, a quantitative link between the dynamics of damage accumulation and mortality of species has so far remained elusive. To address this question, we examine stability properties of a generic gene regulatory network (GRN) and demonstrate that many characteristics of aging and the associated population mortality rate emerge as inherent properties of the critical dynamics of gene regulation and metabolic levels. Based on the analysis of age-dependent changes in gene-expression and metabolic profiles in Drosophila melanogaster, we explicitly show that the underlying GRNs are nearly critical and inherently unstable. This instability manifests itself as aging in the form of distortion of gene expression and metabolic profiles with age, and causes the characteristic increase in mortality rate with age as described by a form of the Gompertz law. In addition, we explain late-life mortality deceleration observed at very late ages for large populations. We show that aging contains a stochastic component, related to accumulation of regulatory errors in transcription/translation/metabolic pathways due to imperfection of signaling cascades in the network and of responses to environmental factors. We also establish that there is a strong deterministic component, suggesting genetic control. Since mortality in humans, where it is characterized best, is strongly associated with the incidence of age-related diseases, our findings support the idea that aging is the driving force behind the development of chronic human diseases.
The generation of two non-identical membrane compartments via exchange of vesicles is considered to require two types of vesicles specified by distinct cytosolic coats that selectively recruit cargo and two membrane-bound SNARE pairs that specify fus ion and differ in their affinities for each type of vesicles. The mammalian Golgi complex is composed of 6-8 non-identical cisternae that undergo gradual maturation and replacement yet features only two SNARE pairs. We present a model that explains how the distinct composition of Golgi cisternae can be generated with two and even a single SNARE pair and one vesicle coat. A decay of active SNARE concentration in aging cisternae provides the seed for a cis > trans SNARE gradient that generates the predominantly retrograde vesicle flux which further enhances the gradient. This flux in turn yields the observed inhomogeneous steady-state distribution of Golgi enzymes, which compete with each other and with the SNAREs for incorporation into transport vesicles. We show analytically that the steady state SNARE concentration decays exponentially with the cisterna number. Numerical solutions of rate equations reproduce the experimentally observed SNARE gradients, overlapping enzyme peaks in cis, medial and trans and the reported change in vesicle nature across Golgi: Vesicles originating from younger cisternae mostly contain Golgi enzymes and SNAREs enriched in these cisternae and extensively recycle through the Endoplasmic Reticulum (ER), while the other subpopulation of vesicles contains Golgi proteins prevalent in older cisternae and hardly reaches the ER.
We introduce an in silico model for the initial spread of an aberrant phenotype with Warburg-like overflow metabolism within a healthy homeostatic tissue in contact with a nutrient reservoir (the blood), aimed at characterizing the role of the microe nvironment for aberrant growth. Accounting for cellular metabolic activity, competition for nutrients, spatial diffusion and their feedbacks on aberrant replication and death rates, we obtain a phase portrait where distinct asymptotic whole-tissue states are found upon varying the tissue-blood turnover rate and the level of blood-borne primary nutrient. Over a broad range of parameters, the spreading dynamics is bistable as random fluctuations can impact the final state of the tissue. Such a behaviour turns out to be linked to the re-cycling of overflow products by non-aberrant cells. Quantitative insight on the overall emerging picture is provided by a spatially homogeneous version of the model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا