ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate theoretically systems of ions in segmented linear Paul traps for the quantum simulation of quantum spin models with tunable interactions. The scheme is entirely general and can be applied to the realization of arbitrary spin-spin inter actions. As a specific application we discuss in detail the quantum simulation of models that exhibit long-distance entanglement in the ground state. We show how tailoring of the axial trapping potential allows for generating spin-spin coupling patterns that are suitable to create long-distance entanglement. We discuss how suitable sequences of microwave pulses can implement Trotter expansions and realize various kinds of effective spin-spin interactions. The corresponding Hamiltonians can be varied on adjustable time scales, thereby allowing the controlled adiabatic preparation of their ground states.
Trapped atomic ions have been successfully used for demonstrating basic elements of universal quantum information processing (QIP). Nevertheless, scaling up of these methods and techniques to achieve large scale universal QIP, or more specialized qua ntum simulations remains challenging. The use of easily controllable and stable microwave sources instead of complex laser systems on the other hand promises to remove obstacles to scalability. Important remaining drawbacks in this approach are the use of magnetic field sensitive states, which shorten coherence times considerably, and the requirement to create large stable magnetic field gradients. Here, we present theoretically a novel approach based on dressing magnetic field sensitive states with microwave fields which addresses both issues and permits fast quantum logic. We experimentally demonstrate basic building blocks of this scheme to show that these dressed states are long-lived and coherence times are increased by more than two orders of magnitude compared to bare magnetic field sensitive states. This changes decisively the prospect of microwave-driven ion trap QIP and offers a new route to extend coherence times for all systems that suffer from magnetic noise such as neutral atoms, NV-centres, quantum dots, or circuit-QED systems.
Neutral Ytterbium (YbI) and singly ionized Ytterbium (YbII) is widely used in experiments in quantum optics, metrology and quantum information science. We report on the investigation of isotope selective two-photoionisation of YbI that allows for eff icient loading of ion traps with YbII. Results are presented on two-colour (399 nm and 369 nm) and single-colour (399 nm) photoionisation and their efficiency is compared to electron impact ionisation. Nearly deterministic loading of a desired number of YbII ions into a linear Paul trap is demonstrated.
Individual electrodynamically trapped and laser cooled ions are addressed in frequency space using radio-frequency radiation in the presence of a static magnetic field gradient. In addition, an interaction between motional and spin states induced by an rf field is demonstrated employing rf-optical double resonance spectroscopy. These are two essential experimental steps towards realizing a novel concept for implementing quantum simulations and quantum computing with trapped ions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا