ترغب بنشر مسار تعليمي؟ اضغط هنا

88 - M. Jamrozy 2014
In this paper we analyze the peculiar radio structure observed across the central region of the galaxy cluster Abell 585 (z=0.12). In the low-resolution radio maps, this structure appears uniform and diffuse on angular scales of ~3 arcmin, and is see mingly related to the distant (z=2.5) radio quasar B3 0727+409 rather than to the cluster itself. However, after a careful investigation of the unpublished archival radio data with better angular resolution, we resolve the structure into two distinct arcmin-scale features, which resemble typical lobes of cluster radio galaxies with no obvious connection to the background quasar. We support this conclusion by examining the spectral and polarization properties of the features, demonstrating in addition that the analyzed structure can hardly be associated with any sort of a radio mini-halo or relics of the cluster. Yet at the same time we are not able to identify host galaxies of the radio lobes in the available optical and infrared surveys. We consider some speculative explanations for our findings, including gravitational wave recoil kicks of SMBHs responsible for the lobes formation in the process of merging massive ellipticals within the central parts of a rich cluster environment, but we do not reach any robust conclusions regarding the origin of the detected radio features.
We announce the discovery of a unique combination of features in a radio source identified with the merger galaxy CGCG 292-057. The radio galaxy both exhibits a highly complex, X-like structure and shows signs of recurrent activity in the form of dou ble-double morphology. The outer lobes of CGCG 292-057 are characterized by low radio power, P_{1400MHz} simeq 2 * 10^{24} WHz^{-1}, placing this source below the FRII/FRI luminosity threshold, and are highly polarized (almost 20 per cent at 1400 MHz) as is typical of X-shaped radio sources. The host is a LINER-type galaxy with a relatively low black hole mass and double-peaked narrow emission lines. These features make this galaxy a primary target for studies of merger-triggered radio activity.
146 - D. J. Saikia 2011
There is increasing evidence to suggest that AGN activity may be episodic, with a wide range of possible time scales. Radio galaxies exhibit the most striking examples of episodic activity, with two or three distinct pairs of lobes on opposite sides of the active nucleus. Radio emission from earlier cycles of activity are expected to have steep radio spectra due to radiative losses, and hence be detected more easily at low radio frequencies. Inverse-Compton scattered cosmic microwave background radiation could in prinicple probe even lower Lorentz-factor particles, revealing an older population. We illustrate the time scales of episodic activity by considering different radio galaxies, discuss the possiblity of episodic activity in cluster radio sources, and a possible trend for a high incidence of H{sc i} absorption in sources with evidence of episodic activity.
123 - D.J. Saikia NCRA 2010
There has been a growing body of evidence to suggest that AGN activity, which is powered by mass accretion on to a supermasive black hole, could be episodic, although the range of time scales involved needs to be explored further. The structure and s pectra of radio emission from radio galaxies, whose sizes range up to $sim$5 Mpc, contain information on the history of AGN activity in the source. They thus provide a unique opportunity to study the time scales of recurrent AGN activity. The most striking examples of recurrent activity in radio galaxies and quasars are the double-double or triple-double radio sources which contain two or three pairs of distinct lobes on opposite sides of the parent optical object. Spectral and dynamical ages of these lobes could be used to constrain time scales of episodic activity. Inverse-Compton scattered cosmic microwave background radiation could in principle probe lower Lorentz-factor particles than radio observations of synchrotron emission, and thereby reveal an older population. We review briefly the radio continuum as well as molecular and atomic gas properties of radio sources which exhibit recurrent or episodic activity, and present a few cases of quasars which require further observations to confirm their episodic nature. We also illustrate evidence of episodic AGN activity in radio sources in clusters of galaxies.
62 - M. Jamrozy 2009
Striking examples of episodic activity in active galactic nuclei are the double-double radio galaxies (DDRGs) with two pairs of oppositely-directed radio lobes from two different cycles of activity. Although there are over about a dozen good examples of DDRGs, so far no case of one associated with a quasar has been reported. We present Giant Metrewave Radio Telescope observations of a candidate double-double radio quasar (DDRQ), J0935+0204 (4C02.27), and suggest that radio jets in this source may also have been intrinsically asymmetric, contributing to the large observed asymmetries in the flux density and location of both pairs of radio lobes.
Dynamical ages of the opposite lobes determined {sl independently} of each other suggest that their ratios are between $sim$1.1 to $sim$1.4. Demanding similar values of the jet power and the radio core density for the same GRS, we look for a {sl self -consistent} solution for the opposite lobes, which results in different density profiles along them found by the fit. A comparison of the dynamical and spectral ages shows that their ratio is between $sim$1 and $sim$5, i.e. is similar to that found for smaller radio galaxies. Two causes of this effect are pointed out.
113 - M. Jamrozy 2009
One of the striking examples of episodic activity in active galactic nuclei are the double-double radio galaxies (DDRGs) with two pairs of oppositely-directed radio lobes from two different cycles of activity. We illustrate, using the DDRG J1453+3308 as an example, that observations over a wide range of frequencies using both the GMRT and the VLA can be used to determine the spectra of the inner and outer lobes, estimate their spectral ages, estimate the time scales of episodic activity, and examine any difference in the injection spectra in the two cycles of activity. Low-frequency GMRT observations also suggest that DDRGs and triple-double radio galaxies are rather rare.
79 - C. Konar 2009
Multifrequency observations with the GMRT and the VLA are used to determine the spectral breaks in consecutive strips along the lobes of a sample of selected giant radio sources (GRSs) in order to estimate their spectral ages. The maximum spectral ag es estimated for the detected radio emission in the lobes of our sample of ten sources has a median value of $sim$20 Myr. The spectral ages of these GRSs are significantly older than smaller sources. In all but one source (J1313+6937) the spectral age gradually increases with distance from the hotspot regions, confirming that acceleration of the particles mainly occurs in the hotspots. Most of the GRSs do not exhibit zero spectral ages in the hotspots. This is likely to be largely due to contamination by more extended emission due to relatively modest resolutions. The injection spectral indices range from $sim$0.55 to 0.88 with a median value of $sim$0.6. We show that the injection spectral index appears to be correlated with luminosity and/or redshift as well as with linear size.
The dynamical ages of the opposite lobes of selected giant radio sources are estimated using the DYNAGE algorithm of Machalski et al., and compared with their spectral ages estimated and studied by Jamrozy et al. in Paper II. As expected, the DYNAGE fits give slightly different dynamical ages and other models parameters for the opposite lobes modelled independently each other, e.g. the age ratios are found between ~1.1 to ~1.4. Demanding similar values of the jet power and the radio core density for the same source, we look for a self-consistent solution for the opposite lobes, which results in different density profiles along them found by the fit. We also show that a departure from the equipartition conditions assumed in the model, justified by X-ray observations of the lobes of some nearby radio galaxies, and a relevant variation of the magnetic-field strengths may provide an equalisation of the lobes ages. A comparison of the dynamical and spectral ages shows that a ratio of the dynamical age to the spectral age of the lobes of investigated giant radio galaxies is between ~1 and ~5, i.e. is similar to that found for smaller radio galaxies (e.g. Parma et al. 1999). Supplementing possible causes for this effect already discussed in the literature, like uncertainty of assumed parameters of the model, an influence of a possible departure from the energy equipartition assumption, etc. Arguments are given to suggest that DYNAGE can better take account of radiative effects at lower frequencies than the spectral-ageing analysis.The DYNAGE algorithm is especially effective for sources at high redshifts, for which an intrinsic spectral curvature is shifted to low frequencies.
70 - M. Jamrozy 2007
Multifrequency observations with the GMRT and the VLA are used to determine the spectral breaks in consecutive strips along the lobes of a sample of selected giant radio sources (GRSs) in order to estimate their spectral ages. The maximum spectral ag es estimated for the detected radio emission in the lobes of our sources range from $sim$6 to 36 Myr with a median value of $sim$20 Myr using the classical equipartition fields. Using the magnetic field estimates from the Beck & Krause formalism the spectral ages range from $sim$5 to 38 Myr with a median value of $sim$22 Myr. These ages are significantly older than smaller sources. In all but one source (J1313+6937) the spectral age gradually increases with distance from the hotspot regions, confirming that acceleration of the particles mainly occurs in the hotspots. Most of the GRSs do not exhibit zero spectral ages in the hotspots, as is the case in earlier studies of smaller sources. This is likely to be largely due to contamination by more extended emission due to relatively modest resolutions. The injection spectral indices range from $sim$0.55 to 0.88 with a median value of $sim$0.6. We discuss these values in the light of theoretical expectations, and show that the injection spectral index appears to be correlated with luminosity and/or redshift as well as with linear size.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا