ترغب بنشر مسار تعليمي؟ اضغط هنا

The goal of the present work is to investigate the role of trivial disorder and nontrivial disorder in the three-state Hopfield model under a Gaussian random field. In order to control the nontrivial disorder, the Hebb interaction is used. This provi des a way to control the system frustration by means of the parameter a=p/N, varying from trivial randomness to a highly frustrated regime, in the thermodynamic limit. We performed the thermodynamic analysis using the one-step replica-symmetry-breaking mean field theory to obtain the order parameters and phase diagrams for several strengths of a, the anisotropy constant, and the random field.
The present work studies the Ghatak-Sherrington (GS) model in the presence of a magnetic random field (RF). Previous results obtained from GS model without RF suggest that disorder and frustration are the key ingredients to produce spontaneous invers e freezing (IF). However, in this model, the effects of disorder and frustration always appear combined. In that sense, the introduction of RF allows us to study the IF under the effects of a disorder which is not a source of frustration. The problem is solved within the one step replica symmetry approximation. The results show that the first order transition between the spin glass and the paramagnetic phases, which is related to the IF for a certain range of crystal field $D$, is gradually suppressed when the RF is increased.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا