ترغب بنشر مسار تعليمي؟ اضغط هنا

Drag of electrons of 1D ballistic nanowire by a nearby 1D beam of ions is considered. We assume that the ion beam is represented by an ensemble of heavy ions of the same velocity $bf V$. The ratio of the drag current to primary current carried by the ion beam is calculated. The drag current appears to be a nonmonotonic function of velocity $V$, it has maxima for $V$ near $v_{nF}/2$ where $n$ is the number of electron miniband (channel) and $v_{nF}$ is the corresponding Fermi velocity. This means that the ion beam drag can be applied for ballistic nanostructure spectroscopy.
We have investigated within the theory of Fermi liquid dependence of Coulomb drag current in a passive quantum wire on the applied voltage $V$ across an active wire and on the temperature $T$ for any values of $eV/k_BT$. We assume that the bottoms of the 1D minibands in both wires almost coincide with the Fermi level. We come to conclusions that 1) within a certain temperature interval the drag current can be a descending function of the temperature $T$; 2) the experimentally observed temperature dependence $T^{-0.77}$ of the drag current can be interpreted within the framework of Fermi liquid theory; 3) at relatively high applied voltages the drag current as a function of the applied voltage saturates; 4) the screening of the electron potential by metallic gate electrodes can be of importance.
Spin-magnetophonon level splitting in a quantum well made of a semimagnetic wide gap semiconductor is considered. The semimagnetic semiconductors are characterized by a large effective $g$ factor. The resonance conditions $hbaromega_{rm LO}=mu_BgB$ f or the spin flip between two Zeeman levels due to interaction with longitudinal optical phonons can be achieved sweeping magnetic field $B$. This condition is studied in quantum wells. It is shown that it leads to a level splitting that is dependent on the electron-phonon coupling strength as well as on the spin-orbit interaction in this structure. We treat in detail the Rashba model for the spin-orbit interaction assuming that the quantum well lacks inversion symmetry and briefly discuss other models. The resonant transmission and reflection of light by the well is suggested as a suitable experimental probe of the level splitting.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا