ﻻ يوجد ملخص باللغة العربية
Spin-magnetophonon level splitting in a quantum well made of a semimagnetic wide gap semiconductor is considered. The semimagnetic semiconductors are characterized by a large effective $g$ factor. The resonance conditions $hbaromega_{rm LO}=mu_BgB$ for the spin flip between two Zeeman levels due to interaction with longitudinal optical phonons can be achieved sweeping magnetic field $B$. This condition is studied in quantum wells. It is shown that it leads to a level splitting that is dependent on the electron-phonon coupling strength as well as on the spin-orbit interaction in this structure. We treat in detail the Rashba model for the spin-orbit interaction assuming that the quantum well lacks inversion symmetry and briefly discuss other models. The resonant transmission and reflection of light by the well is suggested as a suitable experimental probe of the level splitting.
In this paper we will review Exciton Spin Dynamics in Semiconductor Quantum Wells. The spin properties of excitons in nanostructures are determined by their fine structure. We will mainly focus in this review on GaAs and InGaAs quantum wells which are model systems.
We report on beating appearance in Shubnikov-de Haas oscillations in conduction band of 18-22nm HgTe quantum wells under applied top-gate voltage. Analysis of the beatings reveals two electron concentrations at the Fermi level arising due to Rashba-l
In inversion-asymmetric semiconductors, spin-orbit coupling induces a k-dependent spin splitting of valence and conduction bands, which is a well-known cause for spin decoherence in bulk and heterostructures. Manipulating nonequilibrium spin coherenc
The carrier spin coherence in a p-doped GaAs/(Al,Ga)As quantum well with a diluted hole gas has been studied by picosecond pump-probe Kerr rotation with an in-plane magnetic field. For resonant optical excitation of the positively charged exciton the
Transport measurements in inverted InAs/GaSb quantum wells reveal a giant spin-orbit splitting of the energy bands close to the hybridization gap. The splitting results from the interplay of electron-hole mixing and spin-orbit coupling, and can excee