ترغب بنشر مسار تعليمي؟ اضغط هنا

We report on the successful implementation of a new approach to locking the frequencies of an OPO-based squeezed-vacuum source and its driving laser. The technique allows the simultaneous measurement of the phase-shifts induced by a cavity, which may be used for the purposes of frequency-locking, as well as the simultaneous measurement of the sub-quantum-noise-limited (sub-QNL) phase quadrature output of the OPO. The homodyne locking technique is cheap, easy to implement and has the distinct advantage that subsequent homodyne measurements are automatically phase-locked. The homodyne locking technique is also unique in that it is a sub-QNL frequency discriminator.
This paper considers the application of integral Linear Quadratic Gaussian (LQG) optimal control theory to a problem of cavity locking in quantum optics. The cavity locking problem involves controlling the error between the laser frequency and the re sonant frequency of the cavity. A model for the cavity system, which comprises a piezo-electric actuator and an optical cavity is experimentally determined using a subspace identification method. An LQG controller which includes integral action is synthesized to stabilize the frequency of the cavity to the laser frequency and to reject low frequency noise. The controller is successfully implemented in the laboratory using a dSpace DSP board.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا