ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider iron impurities in the noble metals gold and silver and compare experimental data for the resistivity and decoherence rate to numerical renormalization group results. By exploiting non-Abelian symmetries we show improved numerical data fo r both quantities as compared to previous calculations [Costi et al., Phys. Rev. Lett. 102, 056802 (2009)], using the discarded weight as criterion to reliably judge the quality of convergence of the numerical data. In addition we also carry out finite-temperature calculations for the magnetoresistivity of fully screened Kondo models with S = 1/2, 1 and 3/2, and compare the results with available measurements for iron in silver, finding excellent agreement between theory and experiment for the spin-3/2 three-channel Kondo model. This lends additional support to the conclusion of Costi et al. that the latter model provides a good effective description of the Kondo physics of iron impurities in gold and silver.
Spin exchange between a single-electron charged quantum dot and itinerant electrons leads to an emergence of Kondo correlations. When the quantum dot is driven resonantly by weak laser light, the resulting emission spectrum allows for a direct probe of these correlations. In the opposite limit of vanishing exchange interaction and strong laser drive, the quantum dot exhibits coherent oscillations between the single-spin and optically excited states. Here, we show that the interplay between strong exchange and non-perturbative laser coupling leads to the formation of a new nonequilibrium quantum-correlated state, characterized by the emergence of a laser-induced secondary spin screening cloud, and examine the implications for the emission spectrum.
A single confined spin interacting with a solid-state environment has emerged as one of the fundamental paradigms of mesoscopic physics. In contrast to standard quantum optical systems, decoherence that stems from these interactions can in general no t be treated using the Born-Markov approximation at low temperatures. Here we study the non-equilibrium dynamics of a single-spin in a semiconductor quantum dot adjacent to a fermionic reservoir and show how the dynamics can be revealed in detail in an optical absorption experiment. We show that the highly asymmetrical optical absorption lineshape of the resulting Kondo exciton consists of three distinct frequency domains, corresponding to short, intermediate and long times after the initial excitation, which are in turn described by the three fixed points of the single-impurity Anderson Hamiltonian. The zero-temperature power-law singularity dominating the lineshape is linked to dynamically generated Kondo correlations in the photo-excited state. We show that this power-law singularity is tunable with gate voltage and magnetic field, and universal.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا