ترغب بنشر مسار تعليمي؟ اضغط هنا

87 - M. Gong , A. Alexandru , Y. Chen 2013
We present a calculation of the strangeness and charmness contents <N|bar{s}s|N> and <N|bar{c}c|N> of the nucleon from dynamical lattice QCD with 2+1 flavors. The calculation is performed with overlap valence quarks on 2+1-flavor domain-wall fermion gauge configurations. The configurations are generated by the RBC collaboration on a 24^3*64 lattice with sea quark mass am_l=0.005, am_s=0.04, and inverse lattice spacing a^{-1}=1.73GeV. Both actions have chiral symmetry which is essential in avoiding contamination due to the operator mixing with other flavors. Nucleon propagator and the quark loops are both computed with stochastic grid sources, while low-mode substitution and low-mode averaging methods are used respectively which substantially improve the signal to noise ratio. We obtain the strangeness matrix element f_{T_{s}} = m_s <N|bar{s}s|N> / M_N = 0.0334(62), and the charmness content f_{T_{c}} = m_c <N|bar{c}c|N> / M_N = 0.094(31) which is resolved from zero by 3sigma precision for the first time.
The calculation of the strangeness and charmness of the nucleon is presented with overlap fermion action on 2+1 flavor domain wall fermion configurations. We adopt stochastic grid sources and the low mode substitution technique to improve the signals of nucleon correlation functions and the loops. The calculation is done on a $24^3times 64$ lattice with $m_l=0.005$, $m_h=0.04$, and $a^{-1}=1.73,{rm GeV}$. We find $ f_{T_{s}} = 0.048(15)$ and $f_{T_{c}} = 0.029(43)$.
61 - M. Gong , A. Li , A. Alexandru 2011
The recently discovered charmed-strangemeson Ds0*(2317) has been speculated to be a tetraquark mesonium. We study this suggestion with overlap fermions on 2+1 flavor domain wall fermion configurations. We use 4-quark interpolating operatorswith Z4 gr id sources on two lattices (16times16times16times32 and 24times24times24 times64) to study the volume dependence of the states in an attempt to discern the nature of the states in the four-quark correlator to see if they are all two-meson scattering states or if one is a tetraquark mesonium. We also use the hybrid boundary condition method for this purpose which is designed to lift the two-meson states in energy while leaving the tetraquark mesonium unchanged. We find that the volume method is not effective in the present case due to the fact that the scattering states spectrum is closely packed for such heavy states so that one cannot separate out individual scattering states since the volume dependence is skewed as a result. However, the hybrid boundary condition method works and we found that the four-quark correlators can be fitted with a tower of two-meson scattering states. We conclude that we do not see a tetraquark mesonium in the Ds0*(2317) meson region.
321 - M. Gong , Y. Chen , G. Meng 2008
Lattice gluon propagators are studied using tadpole and Symanzik improved gauge action in Landau gauge. The study is performed using anisotropic lattices with asymmetric volumes. The Landau gauge dressing function for the gluon propagator measured on the lattice is fitted according to a leading power behavior: $Z(q^2)simeq (q^2)^{2kappa}$ with an exponent $kappa$ at small momenta. The gluon propagators are also fitted using other models and the results are compared. Our result is compatible with a finite gluon propagator at zero momentum in Landau gauge.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا