ترغب بنشر مسار تعليمي؟ اضغط هنا

We geometrize six-dimensional pure $mathcal{N}=1$ Supergravity by means of an exact Courant algebroid, whose Severa class is defined through the Supergravity three-form $H$, equipped with a generalized metric and a compatible, torsion-free, generaliz ed connection. The Supergravity equations of motion follow from the vanishing of the Ricci curvature of the generalized metric, satisfying a natural notion of self-duality. This way, we interpret the solutions of six-dimensional pure, $mathcal{N}=1$, Supergravity as generalized self-dual gravitational monopoles. For the D1-D5 black string solution, we explore the possibility of controlling space-time singularities by using $B$-field transformations.
We have developed an efficient simulation tool GOLLUM for the computation of electrical, spin and thermal transport characteristics of complex nanostructures. The new multi-scale, multi-terminal tool addresses a number of new challenges and functiona lities that have emerged in nanoscale-scale transport over the past few years. To illustrate the flexibility and functionality of GOLLUM, we present a range of demonstrator calculations encompassing charge, spin and thermal transport, corrections to density functional theory such as LDA+U and spectral adjustments, transport in the presence of non-collinear magnetism, the quantum-Hall effect, Kondo and Coulomb blockade effects, finite-voltage transport, multi-terminal transport, quantum pumps, superconducting nanostructures, environmental effects and pulling curves and conductance histograms for mechanically-controlled-break-junction experiments.
Spin waves have been studied experimentally and by simulations in 1000 nm side equilateral triangular Permalloy dots in the Buckle state (B, with in-plane field along the triangle base) and the Y state (Y, with in-plane field perpendicular to the bas e). The excess of exchange energy at the triangles edges creates channels that allow effective spin wave propagation along the edges inthe B state. These quasi one-dimensional spin waves emitted by the vertex magnetic charges gradually transform from propagating to standing due to interference and(as pointed out by simulations) areweakly affected by smallvariations of the aspect ratio(from equilateral to isosceles dots) or by interdot dipolar interaction present in our dot arrays. Spin waves excited in the Y state have mainly a two-dimensional character.Propagation of the spin waves along the edge states in triangular dots opens possibilities for creation of new and versatile spintronic devices.
We study the dynamics in a one dimensional hard-core Bose gas with power-law hopping after an abrupt reduction of the hopping range using the time-dependent density-matrix renormalization group (t-DMRG) and bosonization techniques. In particular, we focus on the destruction of the Bose-Einstein condensate (BEC), which is present in the initial state in the thermodynamic limit. We argue that this type of quench is akin to a sudden reduction in the effective dimensionality $d$ of the system (from $d > 1$ to $d = 1$). We identify two regimes in the evolution of the BEC fraction. For short times the decay of the BEC fraction is Gaussian while for intermediate to long times, it is well described by a stretched exponential with an exponent that depends on the initial effective dimensionality of the system. These results are potentially relevant for cold trapped-ion experiments which can simulate an equivalent of hard-core bosons, i.e. spins, with tunable long-range interactions.
A charge modulation has recently been reported in (Y,Nd)Ba$_2$Cu$_3$O$_{6+x}$ [Ghiringhelli {em et al.} Science 337, 821 (2013)]. Here we report Cu $L_3$ edge soft x-ray scattering studies comparing the lattice modulation associated with the charge m odulation in YBa$_2$Cu$_3$O$_{6.6}$ with that associated with the well known charge and spin stripe order in La$_{1.875}$Ba$_{0.125}$CuO$_4$. We find that the correlation length in the CuO$_2$ plane is isotropic in both cases, and is $259 pm 9$ AA for La$_{1.875}$Ba$_{0.125}$CuO$_4$ and $55 pm 15$ AA for YBa$_2$Cu$_3$O$_{6.6}$. Assuming weak inter-planar correlations of the charge ordering in both compounds, we conclude that the order parameters of the lattice modulations in La$_{1.875}$Ba$_{0.125}$CuO$_4$ and YBa$_2$Cu$_3$O$_{6.6}$ are of the same order of magnitude.
We report a novel soft x-ray nanodiffraction study of antiferromagnetic domains in the strongly correlated bylayer manganite La$_{0.96}$Sr$_{2.04}$Mn$_{2}$O$_{7}$. We find that the antiferromagnetic domains are quenched, forming a unique domain patte rn with each domain having an intrinsic memory of its spin direction, and with associated domain walls running along crystallographic directions. This can be explained by the presence of crystallographic or magnetic imperfections locked in during the crystal growth process which pin the antiferromagnetic domains. The antiferromagnetic domain pattern shows two distinct types of domain. We observe, in one type only, a periodic ripple in the manganese spin direction with a period of approximately 4 micrometer. We propose that the loss of inversion symmetry within a bilayer is responsible for this ripple structure through a Dzyaloshinskii-Moriya-type interaction.
The growth of single layer graphene nanometer size domains by solid carbon source molecular beam epitaxy on hexagonal boron nitride (h-BN) flakes is demonstrated. Formation of single-layer graphene is clearly apparent in Raman spectra which display s harp optical phonon bands. Atomic-force microscope images and Raman maps reveal that the graphene grown depends on the surface morphology of the h-BN substrates. The growth is governed by the high mobility of the carbon atoms on the h-BN surface, in a manner that is consistent with van der Waals epitaxy. The successful growth of graphene layers depends on the substrate temperature, but is independent of the incident flux of carbon atoms.
Almost all Galactic black hole binaries with low mass donor stars are transient X-ray sources; we expect most of the X-ray transients observed in external galaxies to be black hole binaries also. Obtaining period estimates for extra-galactic transien ts is challenging, but the resulting period distribution is an important tool for modeling the evolution history of the host galaxy. We have obtained periods, or upper limits, for 12 transients in M31, using an updated relation between the optical and X-ray luminosities. We have monitored the central region of M31 with Chandra for the last ~12 years, and followed up promising transients with HST; 4sigma B magnitude limits for optical counterparts are ~26--29, depending on crowding. We obtain period estimates for each transient for both neutron star and black hole accretors. Periods range from <0.4 to 490+/-90 hours (<0.97 to <175 hrs if all are BH systems). These M31 transients appear to be somewhat skewed towards shorter periods than the Milky Way (MW) transients; indeed, comparing the M31 and MW transients with survival analysis techniques used to account for some data with only upper limits yield probabilities of ~0.02--0.08 that the two populations are drawn from the same distribution. We also checked for a correlation between orbital period and distance from the nucleus, finding a 12% probability of no correlation. Further observations of M31 transients will strengthen these results.
Gas-filled Time Projection Chambers (TPCs) with Gas Electron Multipliers (GEMs) and pixels appear suitable for direction-sensitive WIMP dark matter searches. We present the background and motivation for our work on this technology, past and ongoing p rototype work, and a development path towards an affordable, 1-$rm m^3$-scale directional dark matter detector, dcube. Such a detector may be particularly suitable for low-mass WIMP searches, and perhaps sufficiently sensitive to clearly determine whether the signals seen by DAMA, CoGeNT, and CRESST-II are due to low-mass WIMPs or background.
The IACOB spectroscopic survey of Galactic OB stars is an ambitious observational project aimed at compiling a large, homogeneous, high-resolution database of optical spectra of massive stars observable from the Northern hemisphere. The quantitative spectroscopic analysis of this database, complemented by the invaluable information provided by Gaia (mainly regarding photometry and distances), will represent a major step forward in our knowledge of the fundamental physical characteristics of Galactic massive stars. In addition, results from this analysis will be of interest for other scientific questions to be investigated using Gaia observations. In this contribution we outline the present status of the IACOB spectroscopic database and indicate briefly some of the synergy links between the IACOB and Gaia scientific projects.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا