ترغب بنشر مسار تعليمي؟ اضغط هنا

Angle-resolved photoelectron spectroscopy, supplemented by theoretical calculations has been applied to study the electronic structure of heavy-fermion material CeFePO, a homologue to the Fe-based high-temperature superconductors, and CeFeAs_0.7P_0.3 O, where the applied chemical pressure results in a ferromagnetic order of the 4f moments. A comparative analysis reveals characteristic differences in the Fe-derived band structure for these materials, implying a rather different hybridization of valence electrons to the localized 4f orbitals. In particular, our results suggest that the ferromagnetism of Ce moments in CeFeAs_0.7P_0.3O is mediated mainly by Fe 3d_xz/yz orbitals, while the Kondo screening in CeFePO is instead due to a strong interaction of Fe 3d_3z^2-r^2 orbitals.
Being homologue to the new, Fe-based type of high-temperature superconductors, CeFePO exhibits magnetism, Kondo and heavy-fermion phenomena. We experimentally studied the electronic structure of CeFePO by means of angle-resolved photoemission spectro scopy. In particular, contributions of the Ce 4f-derived states and their hybridization to the Fe 3d bands were explored using both symmetry selection rules for excitation and their photoionization cross-section variations as a function of photon energy. It was experimentally found - and later on confirmed by LDA as well as DMFT calculations - that the Ce 4f states hybridize to the Fe 3d states of d_{3z^2-r^2} symmetry near the Fermi level that discloses their participation in the occurring electron-correlation phenomena and provides insight into mechanism of superconductivity in oxopnictides.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا