ترغب بنشر مسار تعليمي؟ اضغط هنا

Recently Sumi et al. (2011) reported evidence for a large population of planetary-mass objects (PMOs) that are either unbound or orbit host stars in orbits > 10 AU. Their result was deduced from the statistical distribution of durations of gravitatio nal microlensing events observed by the MOA collaboration during 2006 and 2007. Here we study the feasibility of measuring the mass of an individual PMO through microlensing by examining a particular event, MOA-2011-BLG-274. This event was unusual as the duration was short, the magnification high, the source-size effect large and the angular Einstein radius small. Also, it was intensively monitored from widely separated locations under clear skies at low air masses. Choi et al. (2012) concluded that the lens of the event may have been a PMO but they did not attempt a measurement of its mass. We report here a re-analysis of the event using re-reduced data. We confirm the results of Choi et al. and attempt a measurement of the mass and distance of the lens using the terrestrial parallax effect. Evidence for terrestrial parallax is found at a 3 sigma level of confidence. The best fit to the data yields the mass and distance of the lens as 0.80 +/- 0.30 M_J and 0.80 +/- 0.25 kpc respectively. We exclude a host star to the lens out to a separation ~ 40 AU. Drawing on our analysis of MOA-2011-BLG-274 we propose observational strategies for future microlensing surveys to yield sharper results on PMOs including those down to super-Earth mass.
63 - M. Freeman 2014
We present results from the most recent set of observations obtained as part of the Chandra X-ray observatory Planetary Nebula Survey (ChanPlaNS), the first comprehensive X-ray survey of planetary nebulae (PNe) in the solar neighborhood (i.e., within ~1.5 kpc of the Sun). The survey is designed to place constraints on the frequency of appearance and range of X-ray spectral characteristics of X-ray-emitting PN central stars and the evolutionary timescales of wind-shock-heated bubbles within PNe. ChanPlaNS began with a combined Cycle 12 and archive Chandra survey of 35 PNe. ChanPlaNS continued via a Chandra Cycle 14 Large Program which targeted all (24) remaining known compact (R_neb <~ 0.4 pc), young PNe that lie within ~1.5 kpc. Results from these Cycle 14 observations include first-time X-ray detections of hot bubbles within NGC 1501, 3918, 6153, and 6369, and point sources in HbDs 1, NGC 6337, and Sp 1. The addition of the Cycle 14 results brings the overall ChanPlaNS diffuse X-ray detection rate to ~27% and the point source detection rate to ~36%. It has become clearer that diffuse X-ray emission is associated with young (<~5x10^3 yr), and likewise compact (R_neb<~0.15 pc), PNe with closed structures and high central electron densities (n_e>~1000 cm^-3), and rarely associated with PNe that show H_2 emission and/or pronounced butterfly structures. Hb 5 is one such exception of a PN with a butterfly structure that hosts diffuse X-ray emission. Additionally, of the five new diffuse X-ray detections, two host [WR]-type CSPNe, NGC 1501 and NGC 6369, supporting the hypothesis that PNe with central stars of [WR]-type are likely to display diffuse X-ray emission.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا