ترغب بنشر مسار تعليمي؟ اضغط هنا

The Chandra Planetary Nebula Survey (ChanPlaNS). II. X-ray Emission from Compact Planetary Nebulae

64   0   0.0 ( 0 )
 نشر من قبل Marcus Freeman
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Freeman




اسأل ChatGPT حول البحث

We present results from the most recent set of observations obtained as part of the Chandra X-ray observatory Planetary Nebula Survey (ChanPlaNS), the first comprehensive X-ray survey of planetary nebulae (PNe) in the solar neighborhood (i.e., within ~1.5 kpc of the Sun). The survey is designed to place constraints on the frequency of appearance and range of X-ray spectral characteristics of X-ray-emitting PN central stars and the evolutionary timescales of wind-shock-heated bubbles within PNe. ChanPlaNS began with a combined Cycle 12 and archive Chandra survey of 35 PNe. ChanPlaNS continued via a Chandra Cycle 14 Large Program which targeted all (24) remaining known compact (R_neb <~ 0.4 pc), young PNe that lie within ~1.5 kpc. Results from these Cycle 14 observations include first-time X-ray detections of hot bubbles within NGC 1501, 3918, 6153, and 6369, and point sources in HbDs 1, NGC 6337, and Sp 1. The addition of the Cycle 14 results brings the overall ChanPlaNS diffuse X-ray detection rate to ~27% and the point source detection rate to ~36%. It has become clearer that diffuse X-ray emission is associated with young (<~5x10^3 yr), and likewise compact (R_neb<~0.15 pc), PNe with closed structures and high central electron densities (n_e>~1000 cm^-3), and rarely associated with PNe that show H_2 emission and/or pronounced butterfly structures. Hb 5 is one such exception of a PN with a butterfly structure that hosts diffuse X-ray emission. Additionally, of the five new diffuse X-ray detections, two host [WR]-type CSPNe, NGC 1501 and NGC 6369, supporting the hypothesis that PNe with central stars of [WR]-type are likely to display diffuse X-ray emission.

قيم البحث

اقرأ أيضاً

We present X-ray spectral analysis of 20 point-like X-ray sources detected in Chandra Planetary Nebula Survey (ChanPlaNS) observations of 59 planetary nebulae (PNe) in the solar neighborhood. Most of these 20 detections are associated with luminous c entral stars within relatively young, compact nebulae. The vast majority of these point-like X-ray-emitting sources at PN cores display relatively hard ($geq0.5$~keV) X-ray emission components that are unlikely to be due to photospheric emission from the hot central stars (CSPN). Instead, we demonstrate that these sources are well modeled by optically-thin thermal plasmas. From the plasma properties, we identify two classes of CSPN X-ray emission: (1) high-temperature plasmas with X-ray luminosities, $L_{rm X}$, that appear uncorrelated with the CSPN bolometric luminosity, $L_{rm bol}$; and (2) lower-temperature plasmas with $L_{rm X}/L_{rm bol}sim10^{-7}$. We suggest these two classes correspond to the physical processes of magnetically active binary companions and self-shocking stellar winds, respectively. In many cases this conclusion is supported by corroborative multiwavelength evidence for the wind and binary properties of the PN central stars. By thus honing in on the origins of X-ray emission from PN central stars, we enhance the ability of CSPN X-ray sources to constrain models of PN shaping that invoke wind interactions and binarity.
62 - J. H. Kastner 2012
We present an overview of the initial results from the Chandra Planetary Nebula Survey (ChanPlaNS), the first systematic (volume-limited) Chandra X-ray Observatory survey of planetary nebulae (PNe) in the solar neighborhood. The first phase of ChanPl aNS targeted 21 mostly high-excitation PNe within ~1.5 kpc of Earth, yielding 4 detections of diffuse X-ray emission and 9 detections of X-ray-luminous point sources at the central stars (CSPNe) of these objects. Combining these results with those obtained from Chandra archival data for all (14) other PNe within ~1.5 kpc that have been observed to date, we find an overall X-ray detection rate of ~70%. Roughly 50% of the PNe observed by Chandra harbor X-ray-luminous CSPNe, while soft, diffuse X-ray emission tracing shocks formed by energetic wind collisions is detected in ~30%; five objects display both diffuse and point-like emission components. The presence of X-ray sources appears correlated with PN density structure, in that molecule-poor, elliptical nebulae are more likely to display X-ray emission (either point-like or diffuse) than molecule-rich, bipolar or Ring-like nebulae. All but one of the X-ray point sources detected at CSPNe display X-ray spectra that are harder than expected from hot (~100 kK) central star photospheres, possibly indicating a high frequency of binary companions to CSPNe. Other potential explanations include self-shocking winds or PN mass fallback. Most PNe detected as diffuse X-ray sources are elliptical nebulae that display a nested shell/halo structure and bright ansae; the diffuse X-ray emission regions are confined within inner, sharp-rimmed shells. All sample PNe that display diffuse X-ray emission have inner shell dynamical ages <~5x10^3 yr, placing firm constraints on the timescale for strong shocks due to wind interactions in PNe.
We present a comprehensive analysis of the compact planetary nebula M2-31 investigating its spectral properties, spatio-kinematical structure and chemical composition using GTC MEGARA integral field spectroscopic observations and NOT ALFOSC medium-re solution spectra and narrow-band images. The GTC MEGARA high-dispersion observations have remarkable tomographic capabilities, producing an unprecedented view of the morphology and kinematics of M2-31 that discloses a fast spectroscopic bipolar outflow along position angles 50$^circ$ and 230$^circ$, an extended shell and a toroidal structure or waist surrounding the central star perpendicularly aligned with the fast outflows. These observations also show that the C II emission is confined in the central region and enclosed by the [N II] emission. This is the first time that the spatial segregation revealed by a 2D map of the C II line implies the presence of multiple plasma components. The deep NOT ALFOSC observations allowed us to detect broad WR features from the central star of M2-31, including previously undetected broad O VI lines that suggest a reclassification as a [WO4]-type star.
We present kinematic data for 211 bright planetary nebulae in eleven Local Group galaxies: M31 (137 PNe), M32 (13), M33 (33), Fornax (1), Sagittarius (3), NGC 147 (2), NGC 185 (5), NGC 205 (9), NGC 6822 (5), Leo A (1), and Sextans A (1). The data wer e acquired at the Observatorio Astronomico Nacional in the Sierra de San Pedro Martir using the 2.1m telescope and the Manchester Echelle Spectrometer in the light of [ion{O}{3}]$lambda$5007 at a resolution of 11 km/s. A few objects were observed in H$alpha$. The internal kinematics of bright planetary nebulae do not depend strongly upon the metallicity or age of their progenitor stellar populations, though small systematic differences exist. The nebular kinematics and H$beta$ luminosity require that the nebular shells be accelerated during the early evolution of their central stars. Thus, kinematics provides an additional argument favoring similar stellar progenitors for bright planetary nebulae in all galaxies.
141 - I. Aleman , T. Ueta , D. Ladjal 2014
We report the first detections of OH$^+$ emission in planetary nebulae (PNe). As part of an imaging and spectroscopy survey of 11 PNe in the far-IR using the PACS and SPIRE instruments aboard the Herschel Space Observatory, we performed a line survey in these PNe over the entire spectral range between 51 and 672$mu$m to look for new detections. OH$^+$ rotational emission lines at 152.99, 290.20, 308.48, and 329.77$mu$m were detected in the spectra of three planetary nebulae: NGC 6445, NGC 6720, and NGC 6781. Excitation temperatures and column densities derived from these lines are in the range of 27 to 47 K and 2$times$10$^{10}$ to 4 $times$10$^{11}$ cm$^{-2}$, respectively. In PNe, the OH+ rotational line emission appears to be produced in the photodissociation region (PDR) in these objects. The emission of OH+ is observed only in PNe with hot central stars (T$_{eff}$ > 100000 K), suggesting that high-energy photons may play a role in the OH+ formation and its line excitation in these objects, as it seems to be the case for ultraluminous galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا