ترغب بنشر مسار تعليمي؟ اضغط هنا

86 - M. Fraser 2015
We present new late-time near-infrared imaging of the site of the nearby core-collapse supernova SN 2012aw, confirming the disappearance of the point source identified by Fraser et al. (2012) and Van Dyk et al. (2012) as a candidate progenitor in bot h J and Ks filters. We re-measure the progenitor photometry, and find that both the J and Ks magnitudes of the source are consistent with those quoted in the literature. We also recover a marginal detection of the progenitor in H-band, for which we measure H=19.67+/-0.40 mag. Comparing the luminosity of the progenitor to stellar evolutionary models, SN 2012aw appears to have resulted from the explosion of a 12.5+/-1.5 Msun red supergiant.
We report the discovery and characterisation of a deeply eclipsing AM CVn-system, Gaia14aae (= ASSASN-14cn). Gaia14aae was identified independently by the All-Sky Automated Survey for Supernovae (ASAS-SN; Shappee et al. 2014) and by the Gaia Science Alerts project, during two separate outbursts. A third outburst is seen in archival Pan-STARRS-1 (PS1; Schlafly et al. 2012; Tonry et al. 2012; Magnier et al. 2013) and ASAS-SN data. Spectroscopy reveals a hot, hydrogen-deficient spectrum with clear double-peaked emission lines, consistent with an accreting double degenerate classification. We use follow-up photometry to constrain the orbital parameters of the system. We find an orbital period of 49.71 min, which places Gaia14aae at the long period extremum of the outbursting AM CVn period distribution. Gaia14aae is dominated by the light from its accreting white dwarf. Assuming an orbital inclination of 90 degrees for the binary system, the contact phases of the white dwarf lead to lower limits of 0.78 M solar and 0.015 M solar on the masses of the accretor and donor respectively and a lower limit on the mass ratio of 0.019. Gaia14aae is only the third eclipsing AM CVn star known, and the first in which the WD is totally eclipsed. Using a helium WD model, we estimate the accretors effective temperature to be 12900+-200 K. The three out-burst events occurred within 4 months of each other, while no other outburst activity is seen in the previous 8 years of Catalina Real-time Transient Survey (CRTS; Drake et al. 2009), Pan-STARRS-1 and ASAS-SN data. This suggests that these events might be rebrightenings of the first outburst rather than individual events.
The Public European Southern Observatory Spectroscopic Survey of Transient Objects (PESSTO) began as a public spectroscopic survey in April 2012. We describe the data reduction strategy and data products which are publicly available through the ESO a rchive as the Spectroscopic Survey Data Release 1 (SSDR1). PESSTO uses the New Technology Telescope with EFOSC2 and SOFI to provide optical and NIR spectroscopy and imaging. We target supernovae and optical transients brighter than 20.5mag for classification. Science targets are then selected for follow-up based on the PESSTO science goal of extending knowledge of the extremes of the supernova population. The EFOSC2 spectra cover 3345-9995A (at resolutions of 13-18 Angs) and SOFI spectra cover 0.935-2.53 micron (resolutions 23-33 Angs) along with JHK imaging. This data release contains spectra from the first year (April 2012 - 2013), consisting of all 814 EFOSC2 spectra and 95 SOFI spectra (covering 298 distinct objects), in standard ESO Phase 3 format. We estimate the accuracy of the absolute flux calibrations for EFOSC2 to be typically 15%, and the relative flux calibration accuracy to be about 5%. The PESSTO standard NIR reduction process does not yet produce high accuracy absolute spectrophotometry but the SOFI JHK imaging will improve this. Future data releases will focus on improving the automated flux calibration of the data products.
106 - E. Kankare , M. Fraser , S. Ryder 2014
We present a photometric and spectroscopic study of a reddened type Ic supernova (SN) 2005at. We report our results based on the available data of SN 2005at, including late-time observations from the Spitzer Space Telescope and the Hubble Space Teles cope. In particular, late-time mid-infrared observations are something rare for type Ib/c SNe. In our study we find SN 2005at to be very similar photometrically and spectroscopically to another nearby type Ic SN 2007gr, underlining the prototypical nature of this well-followed type Ic event. The spectroscopy of both events shows similar narrow spectral line features. The radio observations of SN 2005at are consistent with fast evolution and low luminosity at radio wavelengths. The late-time Spitzer data suggest the presence of an unresolved light echo from interstellar dust and dust formation in the ejecta, both of which are unique observations for a type Ic SN. The late-time Hubble observations reveal a faint point source coincident with SN 2005at, which is very likely either a declining light echo of the SN or a compact cluster. For completeness we study ground-based pre-explosion archival images of the explosion site of SN 2005at, however this only yielded very shallow upper limits for the SN progenitor star. We derive a host galaxy extinction of $A_{V} approx 1.9$ mag for SN 2005at, which is relatively high for a SN in a normal spiral galaxy not viewed edge-on.
169 - M. Fraser , M. Magee , R. Kotak 2013
Using imaging from the Pan-STARRS1 survey, we identify a precursor outburst at epochs 287 and 170 days prior to the reported explosion of the purported Type IIn supernova (SN) 2011ht. In the Pan-STARRS data, a source coincident with SN 2011ht is dete cted exclusively in the zps and yps-bands. An absolute magnitude of M$_zsimeq$-11.8 suggests that this was an outburst of the progenitor star. Unfiltered, archival Catalina Real Time Transient survey images also reveal a coincident source from at least 258 to 138 days before the main event. We suggest that the outburst is likely to be an intrinsically red eruption, although we cannot conclusively exclude a series of erratic outbursts which were observed only in the redder bands by chance. This is only the fourth detection of an outburst prior to a claimed SN, and lends credence to the possibility that many more interacting transients have pre-explosion outbursts, which have been missed by current surveys.
We present optical and near-infrared (NIR) photometry and spectroscopy of the Type IIb supernova (SN) 2011dh for the first 100 days. We complement our extensive dataset with SWIFT ultra-violet (UV) and Spitzer mid-infrared (MIR) data to build a UV to MIR bolometric lightcurve using both photometric and spectroscopic data. Hydrodynamical modelling of the SN based on this bolometric lightcurve have been presented in Bersten (2012). We find that the absorption minimum for the hydrogen lines is never seen below ~11000 km/s but approaches this value as the lines get weaker. This suggests that the interface between the helium core and hydrogen rich envelope is located near this velocity in agreement with the Bersten et al. (2012) He4R270 ejecta model. Spectral modelling of the hydrogen lines using this ejecta model supports the conclusion and we find a hydrogen mass of 0.01-0.04 solar masses to be consistent with the observed spectral evolution. We estimate that the photosphere reaches the helium core at 5-7 days whereas the helium lines appear between ~10 and ~15 days, close to the photosphere and then move outward in velocity until ~40 days. This suggests that increasing non-thermal excitation due to decreasing optical depth for the gamma-rays is driving the early evolution of these lines. We also provide and discuss pre- and post-explosion observations of the SN site which shows a reduction by 75 percent in flux at the position of the yellow supergiant coincident with SN 2011dh. The B, V and r band decline rates of 0.0073, 0.0090 and 0.0053 mag/day respectively are consistent with the remaining flux being emitted by the SN. Hence we find that the star was indeed the progenitor of SN 2011dh as previously suggested by Maund et al. (2011) and which is also consistent with the results from the hydrodynamical modelling.
Core-collapse supernovae (SNe) are the spectacular finale to massive stellar evolution. In this Letter, we identify a progenitor for the nearby core-collapse SN 2012aw in both ground based near-infrared, and space based optical pre-explosion imaging. The SN itself appears to be a normal Type II Plateau event, reaching a bolometric luminosity of 10$^{42}$ erg s$^{-1}$ and photospheric velocities of $sim$11,000 kms from the position of the H$beta$ P-Cygni minimum in the early SN spectra. We use an adaptive optics image to show that the SN is coincident to within 27 mas with a faint, red source in pre-explosion HST+WFPC2, VLT+ISAAC and NTT+SOFI images. The source has magnitudes $F555W$=26.70$pm$0.06, $F814W$=23.39$pm$0.02, $J$=21.1$pm$0.2, $K$=19.1$pm$0.4, which when compared to a grid of stellar models best matches a red supergiant. Interestingly, the spectral energy distribution of the progenitor also implies an extinction of $A_V>$1.2 mag, whereas the SN itself does not appear to be significantly extinguished. We interpret this as evidence for the destruction of dust in the SN explosion. The progenitor candidate has a luminosity between 5.0 and 5.6 log L/lsun, corresponding to a ZAMS mass between 14 and 26 msun (depending on $A_V$), which would make this one of the most massive progenitors found for a core-collapse SN to date.
103 - J. R. Maund , M. Fraser , M. Ergon 2011
We present the detection of the progenitor of the Type II SN 2011dh in archival pre-explosion Hubble Space Telescope images. Using post-explosion Adaptive Optics imaging with Gemini NIRI+ALTAIR, the position of the SN in the pre-explosion images was determined to within 23mas. The progenitor object was found to be consistent with a F8 supergiant star (log L/L_{odot}=4.92+/-0.20 and T_{eff}=6000+/-280K). Through comparison with stellar evolution tracks, this corresponds to a single star at the end of core C-burning with an initial mass of M_{ZAMS}=13+/-3M_{odot}. The possibility of the progenitor source being a cluster is rejected, on the basis of: 1) the source is not spatially extended; 2) the absence of excess Halpha, emission; and 3) the poor fit to synthetic cluster SEDs. It is unclear if a binary companion is contributing to the observed SED, although given the excellent correspondence of the observed photometry to a single star SED we suggest the companion does not contribute significantly. Early photometric and spectroscopic observations show fast evolution similar to the transitional Type IIb SN 2008ax, and suggest that a large amount of the progenitors hydrogen envelope was removed before explosion.
We present adaptive optics imaging of the core collapse supernova (SN) 2009md, which we use together with archival emph{Hubble Space Telescope} data to identify a coincident progenitor candidate. We find the progenitor to have an absolute magnitude o f $V = -4.63^{+0.3}_{-0.4}$ mag and a colour of $V-I = 2.29^{+0.25}_{-0.39}$ mag, corresponding to a progenitor luminosity of log $L$/L$_{odot}$ $sim4.54pm0.19$ dex. Using the stellar evolution code STARS, we find this to be consistent with a red supergiant progenitor with $M = 8.5_{-1.5}^{+6.5}$ M$_{odot}$. The photometric and spectroscopic evolution of SN 2009md is similar to that of the class of sub-luminous Type IIP SNe; in this paper we compare the evolution of SN 2009md primarily to that of the sub-luminous SN 2005cs. We estimate the mass of $^{56}$Ni ejected in the explosion to be $(5.4pm1.3) times 10^{-3}$ M$_{odot}$ from the luminosity on the radioactive tail, which is in agreement with the low $^{56}$Ni masses estimated for other sub-luminous Type IIP SNe. From the lightcurve and spectra, we show the SN explosion had a lower energy and ejecta mass than the normal Type IIP SN 1999em. We discuss problems with stellar evolutionary models, and the discrepancy between low observed progenitor luminosities (log $L$/L$_{odot}$ $sim4.3-5$ dex) and model luminosities after the second-dredge-up for stars in this mass range, and consider an enhanced carbon burning rate as a possible solution. In conclusion, SN 2009md is a faint SN arising from the collapse of a progenitor close to the lower mass limit for core-collapse. This is now the third discovery of a low mass progenitor star producing a low energy explosion and low $^{56}$Ni ejected mass, which indicates that such events arise from the lowest end of the mass range that produces a core-collapse supernova (7-8 M$_{odot}$).
167 - M. Fraser 2010
High resolution optical spectra of 57 Galactic B-type supergiant stars have been analyzed to determine their rotational and macroturbulent velocities. In addition, their atmospheric parameters (effective temperature, surface gravity and microturbulen t velocity) and surface nitrogen abundances have been estimated using a non-LTE grid of model atmospheres. Comparisons of the projected rotational velocities have been made with the predictions of stellar evolutionary models and in general good agreement was found. However for a small number of targets, their observed rotational velocities were significantly larger than predicted, although their nitrogen abundances were consistent with the rest of the sample. We conclude that binarity may have played a role in generating their large rotational velocities. No correlation was found between nitrogen abundances and the current projected rotational velocities. However a correlation was found with the inferred projected rotational velocities of the main sequence precursors of our supergiant sample. This correlation is again in agreement with the predictions of single star evolutionary models that incorporate rotational mixing. The origin of the macroturbulent and microturbulent velocity fields is discussed and our results support previous theoretical studies that link the former to sub-photospheric convection and the latter to non-radial gravity mode oscillations. In addition, we have attempted to identify differential rotation in our most rapidly rotating targets.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا