ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate a system consisting of a single, as well as two emitters strongly coupled to surface plasmon modes of a nano-wire using a Green function approach. Explicit expressions are derived for the spontaneous decay rate into the plasmon modes a nd for the atom-plasmon coupling as well as a plasmon-mediated atom-atom coupling. Phenomena due to the presence of losses in the metal are discussed. In case of two atoms, we observe Dicke sub- and superradiance resulting from their plasmon-mediated interaction. Based on this phenomenon, we propose a scheme for a deterministic two-qubit quantum gate. We also discuss a possible realization of interesting many-body Hamiltonians, such as the spin-boson model, using strong emitter-plasmon coupling.
We analyse the phase diagram of ultra-cold bosons in a one-dimensional superlattice potential with disorder using the time evolving block decimation algorithm for infinite sized systems (iTEBD). For degenerate potential energies within the unit cell of the superlattice loophole-shaped insulating phases with non-integer filling emerge with a particle-hole gap proportional to the boson hopping. Adding a small amount of disorder destroys this gap. For not too large disorder the loophole Mott regions detach from the axis of vanishing hopping giving rise to insulating islands. Thus the system shows a transition from a compressible Bose-glass to a Mott-insulating phase with increasing hopping amplitude. We present a straight forward effective model for the dynamics within a unit cell which provides a simple explanation for the emergence of Mott-insulating islands. In particular it gives rather accurate predictions for the inner critical point of the Bose-glass to Mott-insulator transition.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا