ترغب بنشر مسار تعليمي؟ اضغط هنا

A close companion of Zeta Orionis A was found in 2000 with the Navy Precision Optical Interferometer (NPOI), and shown to be a physical companion. Because the primary is a supergiant of type O, for which dynamical mass measurements are very rare, the companion was observed with NPOI over the full 7-year orbit. Our aim was to determine the dynamical mass of a supergiant that, due to the physical separation of more than 10 AU between the components, cannot have undergone mass exchange with the companion. The interferometric observations allow measuring the relative positions of the binary components and their relative brightness. The data collected over the full orbital period allows all seven orbital elements to be determined. In addition to the interferometric observations, we analyzed archival spectra obtained at the Calar Alto, Haute Provence, Cerro Armazones, and La Silla observatories, as well as new spectra obtained at the VLT on Cerro Paranal. In the high-resolution spectra we identified a few lines that can be associated exclusively to one or the other component for the measurement of the radial velocities of both. The combination of astrometry and spectroscopy then yields the stellar masses and the distance to the binary star. The resulting masses for components Aa of 14.0 solar masses and Ab of 7.4 solar masses are low compared to theoretical expectations, with a distance of 294 pc which is smaller than a photometric distance estimate of 387 pc based on the spectral type B0III of the B component. If the latter (because it is also consistent with the distance to the Orion OB1 association) is adopted, the mass of the secondary component Ab of 14 solar masses would agree with classifying a star of type B0.5IV. It is fainter than the primary by about 2.2 magnitudes in the visual. The primary mass is then determined to be 33 solar masses.
55 - N. Przybilla 2008
Context: Hyper-velocity stars are suggested to originate from the dynamical interaction of binary stars with the supermassive black hole in the Galactic centre (GC), which accelerates one component of the binary to beyond the Galactic escape velocity . Aims: The evolutionary status and GC origin of the HVS SDSS J113312.12+010824.9 (HVS7) is constrained from a detailed study of its stellar parameters and chemical composition. Methods: High-resolution spectra of HVS7 obtained with UVES on the ESO VLT were analysed using state-of-the-art NLTE/LTE modelling techniques that can account for a chemically-peculiar composition via opacity sampling. Results: Instead of the expected slight enrichments of alpha-elements and near-solar Fe, huge chemical peculiarities of all elements are apparent. The He abundance is very low (<1/100 solar), C, N and O are below the detection limit, i.e they are underabundant (<1/100, <1/3 and <1/10 solar). Heavier elements, however, are overabundant: the iron group by a factor of ~10, P, Co and Cl by factors ~40, 80 and 440 and rare-earth elements and Hg even by ~10000. An additional finding, relevant also for other chemically peculiar stars are the large NLTE effects on abundances of TiII and FeII (~0.6-0.7dex). The derived abundance pattern of HVS7 is characteristic for the class of chemical peculiar magnetic B stars on the main sequence. The chemical composition and high vsini=55+-2km/s render a low mass nature of HVS7 as a blue horizontal branch star unlikely. Conclusions: Such a surface abundance pattern is caused by atomic diffusion in a possibly magnetically stabilised, non-convective atmosphere. Hence all chemical information on the stars place of birth and its evolution has been washed out. High precision astrometry is the only means to validate a GC origin for HVS7.
Context: Hyper-velocity stars move so fast that only a supermassive black hole (SMBH) seems to be capable to accelerate them. Hence the Galactic centre (GC) is their only suggested place of origin. Edelmann et al. (2005) found the early B-star HE0437 -5439 to be too short-lived to have reached its current position in the Galactic halo if ejected from the GC, except if being a blue straggler. Its proximity to the LMC suggested an origin from this galaxy. Aims: The chemical signatures of stars at the GC are significantly different from those in the LMC. Hence, an accurate measurement of the abundance pattern of HE0437-5439 will yield a new tight constraint on the place of birth of this star. Methods: High-resolution spectra obtained with UVES on the VLT are analysed using state-of-the-art non-LTE modelling techniques. Results: We measured abundances of individual elements to very high accuracy in HE0437-5439 as well as in two reference stars, from the LMC and the solar neighbourhood. The abundance pattern is not consistent at all with that observed in stars near the GC, ruling our an origin from the GC. However, there is a high degree of consistency with the LMC abundance pattern. Our abundance results cannot rule out an origin in the outskirts of the Galactic disk. However, we find the life time of HE0437-5439 to be more than 3 times shorter than the time of flight to the edge of the disk, rendering a Galactic origin unlikely. Conclusions: Only one SMBH is known to be present in Galaxy and none in the LMC. Hence the exclusion of an GC origin challenges the SMBH paradigm. We conclude that there must be other mechanism(s) to accelerate stars to hyper-velocity speed than the SMBH. We draw attention to dynamical ejection from dense massive clusters, that has recently been proposed by Gvaramadze et al. (2008).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا