ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical mass of the O-type supergiant in Zeta Orionis A

197   0   0.0 ( 0 )
 نشر من قبل Christian Hummel
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A close companion of Zeta Orionis A was found in 2000 with the Navy Precision Optical Interferometer (NPOI), and shown to be a physical companion. Because the primary is a supergiant of type O, for which dynamical mass measurements are very rare, the companion was observed with NPOI over the full 7-year orbit. Our aim was to determine the dynamical mass of a supergiant that, due to the physical separation of more than 10 AU between the components, cannot have undergone mass exchange with the companion. The interferometric observations allow measuring the relative positions of the binary components and their relative brightness. The data collected over the full orbital period allows all seven orbital elements to be determined. In addition to the interferometric observations, we analyzed archival spectra obtained at the Calar Alto, Haute Provence, Cerro Armazones, and La Silla observatories, as well as new spectra obtained at the VLT on Cerro Paranal. In the high-resolution spectra we identified a few lines that can be associated exclusively to one or the other component for the measurement of the radial velocities of both. The combination of astrometry and spectroscopy then yields the stellar masses and the distance to the binary star. The resulting masses for components Aa of 14.0 solar masses and Ab of 7.4 solar masses are low compared to theoretical expectations, with a distance of 294 pc which is smaller than a photometric distance estimate of 387 pc based on the spectral type B0III of the B component. If the latter (because it is also consistent with the distance to the Orion OB1 association) is adopted, the mass of the secondary component Ab of 14 solar masses would agree with classifying a star of type B0.5IV. It is fainter than the primary by about 2.2 magnitudes in the visual. The primary mass is then determined to be 33 solar masses.



قيم البحث

اقرأ أيضاً

Massive stars play a significant role in the chemical and dynamical evolution of galaxies. However, much of their variability, particularly during their evolved supergiant stage, is poorly understood. To understand the variability of evolved massive stars in more detail, we present a study of the O9.2Ib supergiant $zeta$ Ori Aa, the only currently confirmed supergiant to host a magnetic field. We have obtained two-color space-based BRIght Target Explorer photometry (BRITE) for $zeta$ Ori Aa during two observing campaigns, as well as simultaneous ground-based, high-resolution optical CHIRON spectroscopy. We perform a detailed frequency analysis to detect and characterize the stars periodic variability. We detect two significant, independent frequencies, their higher harmonics, and combination frequencies: the stellar rotation period $P_{mathrm{rot}} = 6.82pm0.18$ d, most likely related to the presence of the stable magnetic poles, and a variation with a period of $10.0pm0.3$ d attributed to circumstellar environment, also detected in the H$alpha$ and several He I lines, yet absent in the purely photospheric lines. We confirm the variability with $P_{mathrm{rot}}$/4, likely caused by surface inhomogeneities, being the possible photospheric drivers of the discrete absorption components. No stellar pulsations were detected in the data. The level of circumstellar activity clearly differs between the two BRITE observing campaigns. We demonstrate that $zeta$ Ori Aa is a highly variable star with both periodic and non-periodic variations, as well as episodic events. The rotation period we determined agrees well with the spectropolarimetric value from the literature. The changing activity level observed with BRITE could explain why the rotational modulation of the magnetic measurements was not clearly detected at all epochs.
176 - J.-C. Bouret 2008
We report here the detection of a weak magnetic field of 50 - 100 G on the O9.7 supergiant zeta Ori A, using spectropolarimetric observations obtained with NARVAL at the 2m Telescope Bernard Lyot atop Pic du Midi (France). zeta Ori A is the third O s tar known to host a magnetic field (along with theta^1 Ori C and HD 191612), and the first detection on a normal rapidly-rotating O star. The magnetic field of zeta Ori A is the weakest magnetic field ever detected on a massive star. The measured field is lower than the thermal equipartition limit (about 100 G). By fitting NLTE model atmospheres to our spectra, we determined that zeta Ori A is a 40 Msun star with a radius of 25 Rsun and an age of about 5 - 6 Myr, showing no surface nitrogen enhancement and losing mass at a rate of about 2x10^(-6) Msol/yr. The magnetic topology of zeta Ori A is apparently more complex than a dipole and involves two main magnetic polarities located on both sides of the same hemisphere; our data also suggest that zeta Ori A rotates in about 7.0 d and is about 40 degrees away from pole-on to an Earth-based observer. Despite its weakness, the detected magnetic field significantly affects the wind structure; the corresponding Alfven radius is however very close to the surface, thus generating a different rotational modulation in wind lines than that reported on the two other known magnetic O stars. The rapid rotation of zeta Ori A with respect to theta^1 Ori C appears as a surprise, both stars having similar unsigned magnetic fluxes (once rescaled to the same radius); it may suggest that the sub-equipartition field detected on zeta Ori A is not a fossil remnant (as opposed to that of theta^1 Ori C and HD 191612), but the result of an exotic dynamo action produced through MHD instabilities.
Analysis of the recent long exposure Chandra X-ray observation of the early-type O star zeta Pup shows clear variability with a period previously reported in optical photometric studies. These 813 ks of HETG observations taken over a roughly one year time span have two signals of periodic variability: a high significance period of 1.7820 +/- 0.0008 day, and a marginal detection of periodic behavior close to either 5 day or 6 day period. A BRITE-Constellation nanosatellite optical photometric monitoring, using near-contemporaneous observations to the Chandra data, confirms a 1.78060 +/- 0.00088 day period for this star. The optical period coincides with the new Chandra period within their error ranges, demonstrating a link between these two wavebands and providing a powerful lever for probing the photosphere/wind connection in this star. The phase lag of the X-ray maximum relative to the optical maximum is approximately phi=0.45, but consideration of secondary maxima in both datasets indicates possibly two hot spots on the star with an X-ray phase lag of phi=0.1 each. The details of this periodic variation of the X-rays are probed by displaying a phased and trailed X-ray spectrum and by constructing phased light curves for wavelength bands within the HETG spectral coverage, ranging down to bands encompassing groups of emission lines. We propose that the 1.78 day period is the stellar rotation period and explore how stellar bright spots and associated co-rotating interacting regions or CIRs could explain the modulation of the optical and X-ray output for this star and their phase difference.
70 - David H. Cohen 2020
New long Chandra grating observations of the O supergiant $zeta$ Pup show not only a brightening of the x-ray emission line flux of 13 per cent in the 18 years since Chandras first observing cycle, but also clear evidence - at more than four sigma si gnificance - of increased wind absorption signatures in its Doppler-broadened x-ray emission line profiles. We demonstrate this with non-parametric analysis of the profiles as well as Gaussian fitting and then use the line-profile model fitting to derive a mass-loss rate of $2.47 pm 0.09 times 10^{-6}$ Msun/yr, which is a 40 per cent increase over the value obtained from the cycle 1 data. The increase in the individual emission line fluxes is greater for short-wavelength lines than long-wavelength lines, as would be expected if a uniform increase in line emission is accompanied by an increase in the wavelength-dependent absorption by the cold wind in which the shock-heated plasma is embedded.
102 - K. Pe~na Ramirez 2011
(Abridged) We aim to: i) confirm the presence of methane absorption in S Ori 73 (a T-type member candidate of the sig Orionis cluster, 3 Myr, 352 pc) through methane imaging; ii) study S Ori 70 and 73 cluster membership via photometric colors and acc urate proper motion analysis; iii) perform a new search to identify additional T-type sig Orionis member candidates with likely masses below 7 Mjup. We obtained HAWK-I (VLT) J, H, and CH4off photometry of an area of 119.15 sq. arcmin in sig Orionis down to Jcomp = 21.7 and Hcomp = 21 mag. Near-infrared data were complemented with optical photometry using images acquired with OSIRIS (GTC) and VISTA as part of the VISTA Orion survey. We derived proper motions by comparison of the new HAWK-I and VISTA images with published near-infrared data taken 3.4 - 7.9 yr ago. S Ori 73 has a red H-CH4off color indicating methane absorption in the H-band and a spectral type of T4 +/- 1. S Ori 70 displays a redder methane color than S Ori 73 in agreement with its latter spectral classification. Our proper motion measurements are larger than the motion of sig Orionis, rendering S Ori 70 and 73 cluster membership uncertain. We identified one new photometric candidate with J = 21.69 +/- 0.12 mag and methane color consistent with spectral type greater than T8. S Ori 73 has colors similar to those of T3-T5 field dwarfs, which in addition to its high proper motion suggests that it is probably a field dwarf located at 170-200 pc. The origin of S Ori 70 remains unclear: it can be a field, foreground mid- to late-T free-floating dwarf with peculiar colors, or an orphan planet ejected through strong dynamical interactions from sig Orionis or from a nearby star-forming region in Orion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا