ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose a novel hybrid single-electron device for reprogrammable low-power logic operations, the magnetic single-electron transistor (MSET). The device consists of an aluminium single-electron transistors with a GaMnAs magnetic back-gate. Changing between different logic gate functions is realized by reorienting the magnetic moments of the magnetic layer which induce a voltage shift on the Coulomb blockade oscillations of the MSET. We show that we can arbitrarily reprogram the function of the device from an n-type SET for in-plane magnetization of the GaMnAs layer to p-type SET for out-of-plane magnetization orientation. Moreover, we demonstrate a set of reprogrammable Boolean gates and its logical complement at the single device level. Finally, we propose two sets of reconfigurable binary gates using combinations of two MSETs in a pull-down network.
We electrically measure intrinsic silicon quantum dots with electrostatically defined tunnel barriers. The presence of both p-type and n-type ohmic contacts enables the accumulation of either electrons or holes. Thus we are able to study both transpo rt regimes within the same device. We investigate the effect of the tunnel barriers and the electrostatically defined quantum dots. There is greater localisation of charge states under the tunnel barriers in the case of hole conduction leading to higher charge noise in the p-regime.
We present data on the electrical transport properties of highly-doped silicon-on-insulator quantum dots under the effect of pulsed magnetic fields up to 48 T. At low field intensities, B<7 T, we observe a strong modification of the conductance due t o the destruction of weak localization whereas at higher fields, where the magnetic field length becomes comparable to the effective Bohr radius of phosphorous in silicon, a strong decrease in conductance is demonstrated. Data in the high and low electric field bias regimes are then compared to show that close to the Coulomb blockade edge magnetically-induced quenching to single donors in the quantum dot is achieved at about 40 T.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا