ترغب بنشر مسار تعليمي؟ اضغط هنا

Reconfigurable Boolean Logic using Magnetic Single-Electron Transistors

257   0   0.0 ( 0 )
 نشر من قبل M. Fernando Gonzalez-Zalba
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a novel hybrid single-electron device for reprogrammable low-power logic operations, the magnetic single-electron transistor (MSET). The device consists of an aluminium single-electron transistors with a GaMnAs magnetic back-gate. Changing between different logic gate functions is realized by reorienting the magnetic moments of the magnetic layer which induce a voltage shift on the Coulomb blockade oscillations of the MSET. We show that we can arbitrarily reprogram the function of the device from an n-type SET for in-plane magnetization of the GaMnAs layer to p-type SET for out-of-plane magnetization orientation. Moreover, we demonstrate a set of reprogrammable Boolean gates and its logical complement at the single device level. Finally, we propose two sets of reconfigurable binary gates using combinations of two MSETs in a pull-down network.



قيم البحث

اقرأ أيضاً

Recent advances in manipulating single electron spins in quantum dots have brought us close to the realization of classical logic gates based on representing binary bits in spin polarizations of single electrons. Here, we show that a linear array of three quantum dots, each containing a single spin polarized electron, and with nearest neighbor exchange coupling, acts as the universal NAND gate. The energy dissipated during switching this gate is the Landauer-Shannon limit of kTln(1/p) [T = ambient temperature and p = intrinsic gate error probability]. With present day technology, p = 1E-9 is achievable above 1 K temperature. Even with this small intrinsic error probability, the energy dissipated during switching the NAND gate is only ~ 21 kT, while todays nanoscale transistors dissipate about 40,000 - 50,000 kT when they switch.
183 - A. Epping , S. Engels , C. Volk 2013
We report on the fabrication and electrical characterisation of etched graphene single electron transistors (SETs) of various sizes on hexagonal boron nitride (hBN) in high magnetic fields. The electronic transport measurements show a slight improvem ent compared to graphene SETs on SiO2. In particular, SETs on hBN are more stable under the influence of perpendicular magnetic fields up to 9T in contrast to measurements reported on SETs on SiO2. This result indicates a reduced surface disorder potential in SETs on hBN which might be an important step towards clean and more controllable graphene QDs.
We have fabricated quantum dot single electron transistors, based on AlGaAs/GaAs heterojunctions without modulation doping, which exhibit clear and stable Coulomb blockade oscillations. The temperature dependence of the Coulomb blockade peak lineshap e is well described by standard Coulomb blockade theory in the quantum regime. Bias spectroscopy measurements have allowed us to directly extract the charging energy, and showed clear evidence of excited state transport, confirming that individual quantum states in the dot can be resolved.
Single particle interference lies at the heart of quantum mechanics. The archetypal double-slit experiment has been repeated with electrons in vacuum up to the more massive $C_{60}$ molecules. Mesoscopic rings threaded by a magnetic flux provide the solid-state analogous. Intra-molecular interference has been recently discussed in molecular junctions. Here we propose to exploit interference to achieve all-electrical control of a single electron spin in quantum dots, a highly desirable property for spintronics and spin-qubit applications. The device consists of an interference single electron transistor (ISET), where destructive interference between orbitally degenerate electronic states produces current blocking at specific bias voltages. We show that in the presence of parallel polarized ferromagnetic leads the interplay between interference and the exchange coupling on the system generates an effective energy renormalization yielding different blocking biases for majority and minority spins. Hence, by tuning the bias voltage full control over the spin of the trapped electron is achieved.
524 - W. W. Xue , Z. Ji , B. Davis 2007
In this letter, we describe operation of a radio-frequency superconducting single electron transistor (RF-SSET) with an on-chip superconducting LC matching network consisting of a spiral inductor L and its capacitance to ground. The superconducting n etwork has a lower parasitic capacitance and gives a better matching for the RF-SSET than does a commercial chip inductor. Moreover, the superconducting network has negligibly low dissipation, leading to sensitive response to changes in the RF-SSET impedance. The charge sensitivity 2.4*10^-6 e/(Hz)^1/2 in the sub-gap region and energy sensitivity of 1.9 hbar indicate that the RF-SSET is operating in the vicinity of the shot noise limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا