ترغب بنشر مسار تعليمي؟ اضغط هنا

125 - L. Bouchet 2008
The microquasar 1E 1740.7-2942 is observed with Integral since Spring 2003. Here, we report on the source high energy behaviour by using the first three years of data collected with SPI and IBIS telescopes, taking advantage of the instruments complem entarity. Light curves analysis showed two main states for 1E 1740.7-2942: the canonical low/hard state of black-hole candidates and a ``dim state, characterised by a ~ 20 times fainter emission, detected only below 50 keV and when summing more than 1Ms of data. For the first time the continuum of the low/hard state has been measured up to ~ 600 keV with a spectrum that is well represented by a thermal Comptonization plus an additional component necessary to fit the data above 200 keV. This high energy component could be related to non-thermal processes as already observed in other black-hole candidates. Alternatively, we show that a model composed by two thermal Comptonizations provides an equally representative description of the data: the temperature of the first population of electrons results as (kTe)_1 ~ 30 keV while the second, (kTe)_2, is fixed at 100 keV. Finally, searching for 511 keV line showed no feature, either narrow or broad, transient or persistent.
We report on X-ray and soft gamma-ray observations of the black-hole candidate GX 339-4 during its 2007 outburst, performed with the RXTE and INTEGRAL satellites. The hardness-intensity diagram of all RXTE/PCA data combined shows a q-shaped track sim ilar to that observed in previous outbursts.The evolution in the diagram suggested that a transition from hard-intermediate state to soft-intermediate state occurred, simultaneously with INTEGRAL observations performed in March. The transition is confirmed by the timing analysis presented in this work, which reveals that a weak type-A quasi-periodic oscillation (QPO) replaces a strong type-C QPO. At the same time, spectral analysis shows that the flux of the high-energy component shows a significant decrease in its flux. However, we observe a delay (roughly one day) between variations of the spectral parameters of the high-energy component and changes in the flux and timing properties. The changes in the high-energy component can be explained either in terms the high-energy cut-off or in terms of a variations in the reflection component. We compare our results with those from a similar transition during the 2004 outburst of GX 339-4.
We report on INTEGRAL observations of the bright black-hole transient GX 339-4 performed during the period August-September 2004. Our data cover three different spectral states, namely Hard/Intermediate State, Soft/Intermediate State and High/Soft St ate. We investigate the spectral variability of the source across the different spectral states. The hard X-ray spectrum becomes softer during the HIMS-to-SIMS transition, but it hardens when reaching the HSS state. A principal component analysis demonstrates that most of the variability occurs through two independent modes: a pivoting of the spectrum around 6 keV (responsible for 75% of the variance) and an intensity variation of the hard component (responsible for 21%). The pivoting is interpreted as due to changes in the soft cooling photon flux entering the corona, the second mode as fluctuations of the heating rate in the corona. Our spectral analysis of the spectra of GX 339-4 shows a high energy excess with respect to pure thermal Comptonisation models in the HIMS: a non-thermal power-law component seems to be requested by data. In all spectral states joint IBIS, SPI and JEM-X data are well represented by hybrid thermal/non-thermal Comptonisation (EQPAIR). The spectral evolution seems to be predominantly driven by a reduction of the ratio of the electron heating rate to the soft cooling photon flux in the corona, l_h/l_s. The inferred accretion disc soft thermal emission increases by about two orders of magnitude, while the Comptonised luminosity decreases by at most a factor of 3. This confirms that the softening we observed is due to a major increase in the flux of soft cooling photons in the corona associated with a modest reduction of the electron heating rate.
In 2005 March 22nd, the INTEGRAL satellite caught a type-I X-ray burst from the unidentified source XMMU J174716.1-281048, serendipitously discovered with XMM-Newton in 2003. Based on the type-I X-ray burst properties, we derived the distance of the object and suggested that the system is undergoing a prolonged accretion episode of many years. We present new data from a Swift/XRT campaign which strengthen this suggestion. AX J1754.2-2754 was an unclassified source reported in the ASCA catalogue of the Galactic Centre survey. INTEGRAL observed a type-I burst from it in 2005, April 16th. Recently, a Swift ToO allowed us to refine the source position and establish its persistent nature.
The microquasar 1E 1740.7-2942 is one of the most appealing source of the Galactic Centre region. The high energy feature detected once by SIGMA has been searched in the last years by INTEGRAL, but never confirmed. Classified as a persistent source, on 2004 it showed a quiescent-like state. In fact for few month 1E 1740.7-2942 was below the detector sensitivity level. We present the long term temporal behaviour of 1E 1740.7-2942 observed by INTEGRAL and RXTE in 2004 and 2005, as well as preliminary results on possible spectral transitions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا